摘要:则由已知条件有:,,
网址:http://m.1010jiajiao.com/timu_id_34585[举报]
已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
,h(x)=
(c≠0,ad-bc≠0,(d-a)2+4bc>0)
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
}是等比数列,并求
an;
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期. 查看习题详情和答案>>
设函数g(x)=
4x+2 |
x+3 |
ax+b |
cx+d |
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1 |
an-x2 |
lim |
n→∞ |
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期. 查看习题详情和答案>>
已知x>
,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由. 查看习题详情和答案>>
1 | 2 |
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由. 查看习题详情和答案>>
已知定义域为[0,1]的函数f(x)同时满足以下三个条件:
①对任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立,并且称f(x)为“友谊函数”,
请解答下列各题:
(1)若已知f(x)为“友谊函数”,求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?并给出理由.
(3)已知f(x)为“友谊函数”,且 0≤x1<x2≤1,求证:f(x1)≤f(x2). 查看习题详情和答案>>
①对任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立,并且称f(x)为“友谊函数”,
请解答下列各题:
(1)若已知f(x)为“友谊函数”,求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?并给出理由.
(3)已知f(x)为“友谊函数”,且 0≤x1<x2≤1,求证:f(x1)≤f(x2). 查看习题详情和答案>>