网址:http://m.1010jiajiao.com/timu_id_34441[举报]
1.C 2.A 3.B 4.D 5.C 6.B 7.D 8.C 9.B 10.A
11.120° 12.3x+y-1=0 13.
14.10 15.100 16.(1),(4)
17.解:(1)设抛物线
,将(2,2)代入,得p=1. …………4分
∴y2=2x为所求的抛物线的方程.………………………………………………………5分
(2)联立
消去y,得到
. ………………………………7分
设AB的中点为
,则
.
∴ 点
到准线l的距离
.…………………………………9分
而
,…………………………11分
,故以AB为直径的圆与准线l相切.…………………… 12分
(注:本题第(2)也可用抛物线的定义法证明)
18.解:(1)在△ACF中,
,即
.………………………………5分
∴
.又
,∴
.……………………
7分
(2)


. ……………………………14分
(注:用坐标法证明,同样给分)
19.
解法一:(1)连OM,作OH⊥SM于H.
∵SM为斜高,∴M为BC的中点,∴BC⊥OM.
∵BC⊥SM,∴BC⊥平面SMO.
又OH⊥SM,∴OH⊥平面SBC.……… 2分
由题意,得
.
设SM=x,
则
,解之
,即
.………………… 5分
(2)设面EBC∩SD=F,取AD中点N,连SN,设SN∩EF=Q.
∵AD∥BC,∴AD∥面BEFC.而面SAD∩面BEFC=EF,∴AD∥EF.
又AD⊥SN,AD⊥NM,AD⊥面SMN.
从而EF⊥面SMN,∴EF⊥QS,且EF⊥QM.
∴∠SQM为所求二面角的平面角,记为α.……… 7分
由平几知识,得
.
∴
,∴
.
∴
,即所求二面角为
. ……………… 10分
(3)存在一点P,使得OP⊥平面EBC.取SD的中点F,连FC,可得梯形EFCB,
取AD的中点G,连SG,GM,得等腰三角形SGM,O为GM的中点,
设SG∩EF=H,则H是EF的中点.
连HM,则HM为平面EFCB与平面SGM的交线.
又∵BC⊥SO,BC⊥GM,∴平面EFCB⊥平面SGM. …………… 12分
在平面SGM中,过O作OQ⊥HM,由两平面垂直的性质,可知OQ⊥平面EFCB.
而OQ
平面SOM,在平面SOM中,延长OQ必与SM相交于一点,
故存在一点P,使得OP⊥平面EBC. ……………………… 14分
,
,
,
. ……………… 1分
,
,
,
.
,
.
=(0,1,0),由题意,得
.解得
.
. …………………………………………………… 5分
,
. ………………………………6分
,
,得
解得
∴
.………………… 8分
,∴
.…………… 10分
点.证明如下:
. ………………………… 11分
,令
与n2共线,则
. ……………… 13分
.故存在P∈SM,使OP⊥面EBC.………………………
14分
=
. ………………3分
=
=
≥
. …………6分
,
,
,∴公比
.……9分
. …………………………………………10分
. ……………12分
…
…
.……15分21.解:(1)∵
,
,∴
,∴
. 1分
,即
,∴
. …3分
,即
时,上式不成立.………………………………………………4分
,即
时,
.由条件
,得到
.
,解得
或
. ……………………………………………5分
,解得
或
.…………………………………………6分
m的取值范围是
或
. ………………………………………7分
,即
.
,则
.
. ………………………10分
有相异两实根
.
,∴
显然
,
,
,∴
,∴
. …………12分




.
为三次函数
的极小值点,故
只有一个实根.…………………………15分