摘要:另解:用数量积的定义结合余弦定理即得.
网址:http://m.1010jiajiao.com/timu_id_34222[举报]
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
和
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
,则存在唯一的一对实数λ,μ,使得
=λ
+μ
,我们就把实数对(λ,μ)称作向量
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
和
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
,
>=
,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
和
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式. 查看习题详情和答案>>
e1 |
e2 |
a |
a |
e1 |
e2 |
a |
i |
j |
i |
j |
π |
3 |
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
i |
j |
a |
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式. 查看习题详情和答案>>
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取和为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量,则存在唯一的一对实数λ,μ,使得=+μ,我们就把实数对(λ,μ)称作向量的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用和表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<,>=,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量和做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.
查看习题详情和答案>>
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量和做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.
查看习题详情和答案>>
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵,∴,…………………1分
∵,得到三角关系是,结合,解得。
(2)由,解得,,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②联立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
将①代入②中,可得 ③ …………………4分
将③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,从而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
综上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
综上可得 …………………12分
(若用,又∵ ∴ ,
查看习题详情和答案>>
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
和
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
,则存在唯一的一对实数λ,μ,使得
=λ
+μ
,我们就把实数对(λ,μ)称作向量
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
和
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
,
>=
,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
和
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.
查看习题详情和答案>>
e1 |
e2 |
a |
a |
e1 |
e2 |
a |
i |
j |
i |
j |
π |
3 |
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
i |
j |
a |
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.