摘要:即求的值域.
网址:http://m.1010jiajiao.com/timu_id_336645[举报]
在一定面积的水域中养殖某种鱼类,每个网箱的产量p是网箱个数x的一次函数,即p(x)=kx+b(k≠0).如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨.由于该水域面积限制,最多只能放置10个网箱.
(Ⅰ)求p(x),并说明放置多少个网箱时,总产量Q达到最高,最高为多少?
(Ⅱ)若鱼的市场价为
万元/吨,养殖的总成本为5lnx+1万元,则应放置多少个网箱才能使总收益y最高?(注:不必求出y的最大值)
查看习题详情和答案>>
(Ⅰ)求p(x),并说明放置多少个网箱时,总产量Q达到最高,最高为多少?
(Ⅱ)若鱼的市场价为
1 | 4 |
在一定面积的水域中养殖某种鱼类,每个网箱的产量p是网箱个数x的一次函数,即p(x)=kx+b(k≠0).如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨.由于该水域面积限制,最多只能放置10个网箱.
(Ⅰ)求p(x),并说明放置多少个网箱时,总产量Q达到最高,最高为多少?
(Ⅱ)若鱼的市场价为万元/吨,养殖的总成本为5lnx+1万元,则应放置多少个网箱才能使总收益y最高?(注:不必求出y的最大值)
查看习题详情和答案>>
设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间上的最小值.
【解析】第一问定义域为真数大于零,得到..
令,则,所以或,得到结论。
第二问中, ().
.
因为0<a<2,所以,.令 可得.
对参数讨论的得到最值。
所以函数在上为减函数,在上为增函数.
(I)定义域为. ………………………1分
.
令,则,所以或. ……………………3分
因为定义域为,所以.
令,则,所以.
因为定义域为,所以. ………………………5分
所以函数的单调递增区间为,
单调递减区间为. ………………………7分
(II) ().
.
因为0<a<2,所以,.令 可得.…………9分
所以函数在上为减函数,在上为增函数.
①当,即时,
在区间上,在上为减函数,在上为增函数.
所以. ………………………10分
②当,即时,在区间上为减函数.
所以.
综上所述,当时,;
当时,
查看习题详情和答案>>