摘要:2.两点间的距离公式.不论A(x1.y1).B(x2.y2)在坐标平面上什么位置.都有d=|AB|=.特别地.与坐标轴平行的线段的长|AB|=|x2-x1|或|AB|=|y2-y1|.
网址:http://m.1010jiajiao.com/timu_id_3203298[举报]
下列语句表达不是算法的是
[ ]
A.
利用平面内两点间的距离公式求平面内M(0,0)与N(2,2)两点间的距离
B.
从长沙到北京的火车票是300元
C.
利用公式法解方程2x2+x-1=0
D.
利用公式S=πr2,计算半径为3的圆的面积
下列语句表达不是算法的是
- A.利用平面内两点间的距离公式求平面内M(0,0)与N(2,2)两点间的距离
- B.从长沙到北京的火车票是300元
- C.利用公式法解方程2x2+x-1=0
- D.利用公式S=πr2,计算半径为3的圆的面积
在等差数列{an}中,a4S4=-14,S5-a5=-14,其中Sn是数列{an}的前n项之和,曲线Cn的方程是
+
=1,直线l的方程是y=x+3.
(1)求数列{an}的通项公式;
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.
查看习题详情和答案>>
| x2 |
| |an| |
| y2 |
| 4 |
(1)求数列{an}的通项公式;
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.
在等差数列
中,
,
,其中
是数列
的前
项之和,曲线
的方程是
,直线
的方程是
.
求数列
的通项公式;
当直线
与曲线
相交于不同的两点
,
时,令
,
求
的最小值;
对于直线
和直线外的一点P,用“
上的点与点P距离的最小值”定义点P到直线
的距离与原有的点到直线距离的概念是等价的,若曲线
与直线
不相交,试以类似的方式给出一条曲线
与直线
间“距离”的定义,并依照给出的定义,在
中自行选定一个椭圆,求出该椭圆与直线
的“距离”.
在等差数列{an}中,a4S4=-14,S5-a5=-14,其中Sn是数列{an}的前n项之和,曲线Cn的方程是
+
=1,直线l的方程是y=x+3.
(1)求数列{an}的通项公式;
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.
查看习题详情和答案>>
(1)求数列{an}的通项公式;
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.
查看习题详情和答案>>