网址:http://m.1010jiajiao.com/timu_id_316192[举报]
在
中,
,分别是角
所对边的长,
,且![]()
(1)求
的面积;
(2)若
,求角C.
【解析】第一问中,由
又∵
∴
∴
的面积为![]()
第二问中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C为内角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面积为
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C为内角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
查看习题详情和答案>>
在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,
求⑴ ∠ADB的大小;⑵ BD的长.
![]()
【解析】本试题主要考查了三角形的余弦定理和正弦定理的运用
第一问中,∵cos∠ADC=![]()
=
=-
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=
∴ cos∠ADB=60°
第二问中,结合正弦定理∵∠DAB=180°-∠ADB-∠B=75°
由
=
得BD=
=5(
+1)
解:⑴ ∵cos∠ADC=![]()
=
=-
,……………………………3分
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=
,
……………5分
∴ cos∠ADB=60° ……………………………6分
⑵ ∵∠DAB=180°-∠ADB-∠B=75° ……………………………7分
由
=
……………………………9分
得BD=
=5(
+1)
查看习题详情和答案>>