网址:http://m.1010jiajiao.com/timu_id_316191[举报]
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围.
【解析】第一问利用的定义域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。
解: (I)的定义域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是 ........4分
(II)若对任意不等式恒成立,
问题等价于, .........5分
由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以; ............6分
当b<1时,;
当时,;
当b>2时,; ............8分
问题等价于 ........11分
解得b<1 或 或 即,所以实数b的取值范围是
查看习题详情和答案>>
已知函数在取得极值
(1)求的单调区间(用表示);
(2)设,,若存在,使得成立,求的取值范围.
【解析】第一问利用
根据题意在取得极值,
对参数a分情况讨论,可知
当即时递增区间: 递减区间: ,
当即时递增区间: 递减区间: ,
第二问中, 由(1)知: 在,
,
在
从而求解。
解:
…..3分
在取得极值, ……………………..4分
(1) 当即时 递增区间: 递减区间: ,
当即时递增区间: 递减区间: , ………….6分
(2) 由(1)知: 在,
,
在
……………….10分
, 使成立
得:
查看习题详情和答案>>
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力 第一问要利用相似比得到结论。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)
第二问,
当且仅当
(3)令
∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.
∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).
查看习题详情和答案>>
月饼是一种时间性很强的商品,若在中秋节前出售,每盒将获利5元,若到中秋节还没能及时售完,中秋节之后只能降价出售,每盒将亏损3元.根据市场调查,销量(百盒)的概率分布如下:
销量(百盒) | 1 | 2 | 3 | 4 | 5 |
| 0.05 | 0.25 | 0.3 | 0.3 | 0.1 |
由于市场风险较大,批发商要求零售商预订月饼的数量,且每年只预订一次,订货量以百盒为单位.
⑴.设订购量为百盒时,获利额为元.下表表示与对应的的分布列,请在空格处填入适当的值,并计算相应的获利期望值;
⑵.预订多少盒月饼最合理?
1 | 2 | 3 | 4 | 5 |
| |
0.05 | 0.25 | 0.3 | 0.3 | 0.1 | ||
1 | 500 | 500 | 500 | 500 | 500 | 500 |
2 | 200 | 1000 | 1000 | 1000 | 1000 | 960 |
3 | -100 | 700 | 1500 | 1500 | 1500 | |
4 | 400 | 1200 | 2000 | 2000 | ||
5 | 100 | 900 | 1700 | 2500 |
(解答本题第⑴小题只需在下面的表格的空位中填入你认为正确的数据即可)
查看习题详情和答案>>已知函数
(1)若函数的图象经过P(3,4)点,求a的值;
(2)比较大小,并写出比较过程;
(3)若,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .
解:⑴∵函数的图象经过∴,即. … 2分
又,所以. ………… 4分
⑵当时,;
当时,. ……………… 6分
因为,,
当时,在上为增函数,∵,∴.
即.当时,在上为减函数,
∵,∴.即. …………………… 8分
⑶由知,.所以,(或).
∴.∴, … 10分
∴ 或 ,所以, 或 .
查看习题详情和答案>>