摘要:21.⑴依题意.时...两式相减得
网址:http://m.1010jiajiao.com/timu_id_316114[举报]
已知数列{an}的通项为an=(2n-1)•2n,求其前n项和Sn时,我们用错位相减法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn=
查看习题详情和答案>>
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn=
(n2-2n+3)•2n+1-6
(n2-2n+3)•2n+1-6
.数列
首项
,前
项和
满足等式
(常数
,
……)
(1)求证:
为等比数列;
(2)设数列
的公比为
,作数列
使
(
……),求数列
的通项公式.
(3)设
,求数列
的前
项和
.
【解析】第一问利用由
得![]()
两式相减得![]()
故
时,![]()
从而
又
即
,而![]()
从而
故![]()
第二问中,
又
故
为等比数列,通项公式为![]()
第三问中,![]()
两边同乘以![]()
利用错位相减法得到和。
(1)由
得![]()
两式相减得![]()
故
时,![]()
从而
………………3分
又
即
,而![]()
从而
故![]()
对任意
,
为常数,即
为等比数列………………5分
(2)
……………………7分
又
故
为等比数列,通项公式为
………………9分
(3)![]()
两边同乘以![]()
………………11分
两式相减得![]()
![]()
查看习题详情和答案>>
已知数列{an}的通项为an=(2n-1)•2n,求其前n项和Sn时,我们用错位相减法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn= . 查看习题详情和答案>>
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn= . 查看习题详情和答案>>