摘要:∴.显然直线过点
网址:http://m.1010jiajiao.com/timu_id_310221[举报]
有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线.过有心曲线的中心的弦叫有心曲线的直径(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆
+
=1(a>b>0)中的推广(不必证明):
.
查看习题详情和答案>>
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆
x2 |
a2 |
y2 |
b2 |
过椭圆
+
=1(a>b>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条连线的斜率之积为定值-
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
过椭圆
+
=1(a>b>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条连线的斜率之积为定值-
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
.
有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线.过有心曲线的中心的弦叫有心曲线的直径(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆中的推广(不必证明):
________
.
查看习题详情和答案>>
有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线.过有心曲线的中心的弦叫有心曲线的直径(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆
+
=1(a>b>0)中的推广(不必证明):
______
.
查看习题详情和答案>>
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆
x2 |
a2 |
y2 |
b2 |
______
.