网址:http://m.1010jiajiao.com/timu_id_295729[举报]
为了了解某市工人开展体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂
(Ⅰ)从A,B,C区中分别抽取的工厂个数;
(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,计算这2个工厂中至少有1个来自A区的概率.
【解析】本试题主要考查了统计和概率的综合运用。
第一问工厂总数为18+27+18=63,样本容量与总体中的个体数比为7/63=1/9…3分
所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2。
第二问设A1,A2为在A区中的抽得的2个工厂,B1,B2,B3为在B区中抽得的3个工厂,
C1,C2为在C区中抽得的2个工厂。
这7个工厂中随机的抽取2个,全部的可能结果有1/2*7*6=32种。
随机的抽取的2个工厂至少有一个来自A区的结果有A1,A2),A1,B2),A1,B1),
A1,B3)A1,C2),A1,C1), …………9分
同理A2还能给合5种,一共有11种。
所以所求的概率为p=11/21
查看习题详情和答案>>
本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下表
性别 是否达标 |
男 |
女 |
合计 |
达标 |
______ |
_____ |
|
不达标 |
_____ |
_____ |
|
合计 |
______ |
______ |
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
查看习题详情和答案>>
(1)求ξ的分布;
(2)求ξ的数学期望及方差;
(3)记“函数f(x)=x2-2ξx+lnx是单调增函数”为事件A,求事件A的概率.
(可能用到的数据:0.762≈0.58,0.482≈0.23,1.522≈2.31,0.242≈0.06)
(1)分别写出违法驾车发生的频率和违法驾车中醉酒驾车的频率;
(2)设酒后驾车为事件E,醉酒驾车为事件F,
判断下列命题是否正确(正确的填写“√”,错误的填写“×”)(填在答题卷中)
①E与F不是互斥事件.
②E与F是互斥事件,但不是对立事件.
③事件E包含事件F.
④P(E∪F)=P(E)+P(F)=1.
(3)从违法驾车的6人中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率.(酒后驾车的4人用大写字母A,B,C,D表示,醉酒驾车的2人用小写字母a,b表示).