网址:http://m.1010jiajiao.com/timu_id_29278[举报]
已知函数y=f(x)对于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R都满足f(a·b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并证明你的结论;
(3)若Sn表示数列{bn}的前n项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)·g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
定义在D上的函数f(x),如果满足:对于任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a·()x+()x;
(1)当a=1时,求函数f(x)在(-∞,0)上的值域.并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.
(3)试定义函数的下界,举一个下界为3的函数模型,并进行证明.
查看习题详情和答案>>已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x.
(Ⅰ)求函数g(x)在区间(0,e]上的值域;
(Ⅱ)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由;
(Ⅲ)
给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,my2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中总能使得F(x1)-f(x2)=(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范围是
查看习题详情和答案>>