网址:http://m.1010jiajiao.com/timu_id_288688[举报]
一、选择题(本大题共8小题,每小题5分,共40分)
ACDDB CDC
二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)
(9)62 (10)2 (11) (12)2,
(13) (14),③④
三、解答题(本大题共6小题,共80分)
(15)(本小题共13分)
解:(Ⅰ)∵(),
∴(). ………………………………………1分
∵,,成等差数列,
∴. ………………………………………3分
∴. ………………………………………5分
∴. ………………………………………6分
(Ⅱ)由(Ⅰ)得
().
∴数列为首项是,公差为1的等差数列. ………………………………………8分
∴.
∴. ………………………………………10分
当时,. ………………………………………12分
当时,上式也成立. ………………………………………13分
∴().
(16)(本小题共13分)
解:(Ⅰ)该间教室两次检测中,空气质量均为A级的概率为.………………………………2分
该间教室两次检测中,空气质量一次为A级,另一次为B级的概率为.
…………………………………4分
设“该间教室的空气质量合格”为事件E.则 …………………………………5分
. …………………………………6分
答:估计该间教室的空气质量合格的概率为.
(Ⅱ)由题意可知,的取值为0,1,2,3,4. …………………………………7分
.
随机变量的分布列为:
0
1
2
3
4
…………………………………12分
解法一:
∴. …………………………………13分
解法二:,
∴. …………………………………13分
(17)(本小题共14分)
(Ⅰ)证明:设的中点为.
在斜三棱柱中,点在底面上的射影恰好是的中点,
平面ABC. ……………………1分
平面,
. ……………………2分
,
∴.
,
∴平面. ……………………4分
平面,
平面平面. ………………………………………5分
解法一:(Ⅱ)连接,平面,
是直线在平面上的射影. ………………………………………5分
,
四边形是菱形.
. ………………………………………7分
. ………………………………………9分
(Ⅲ)过点作交于点,连接.
,
平面.
.
是二面角的平面角. ………………………………………11分
设,则,
.
.
.
.
平面,平面,
.
.
在中,可求.
∵,∴.
∴.
. ………………………………………13分
.
∴二面角的大小为. ………………………………………14分
解法二:(Ⅱ)因为点在底面上的射影是的中点,设的中点为,则平面ABC.以为原点,过平行于的直线为轴,所在直线为轴,所在直线为轴,建立如图所示的空间直角坐标系.
设,由题意可知,.
设,由,得
………………………………………7分
.
又.
.
. ………………………………………9分
(Ⅲ)设平面的法向量为.
则
∴
.
设平面的法向量为.则
∴
. ………………………………………12分
. ………………………………………13分
二面角的大小为. ………………………………………14分
(18)(本小题共13分)
解:(Ⅰ)函数的定义域为. ………………………………………1分
. ………………………………………3分
由,解得.
由,解得且.
∴的单调递增区间为,单调递减区间为,.
………………………………………6分
(Ⅱ)由题意可知,,且在上的最小值小于等于时,存在实数,使得不等式成立. ………………………………………7分
若即时,
x
a+1
-
0
+
ㄋ
极小值
ㄊ
∴在上的最小值为.
则,得. ………………………………………10分
若即时,在上单调递减,则在上的最小值为.
由得(舍). ………………………………………12分
综上所述,. ………………………………………13分
(19)(本小题共13分)
解:(Ⅰ)由抛物线C:得抛物线的焦点坐标为,设直线的方程为:,. ………………………………………1分
由得.
所以,.因为, …………………………………3分
所以.
所以.即.
所以直线的方程为:或. ………………………………………5分
(Ⅱ)设,,则.
由得.
因为,所以,. ……………………………………7分
(?)设,则.
由题意知:∥,.
即.
显然 ………………………………………9分
(?)由题意知:为等腰直角三角形,,即,即.
. .
.,. ………………………………………11分
.
即的取值范围是. ………………………………………13分
(20)(本小题共14分)
解:(Ⅰ)取,得,即.
因为,所以. ………………………………………1分
取,得.因为,所以.
取,得,所以.
………………………………………3分
(Ⅱ)在中取得.
所以.
在中取,得.
在中取,
得.
所以.
在中取,
得.
所以.
在中取,
得
.
所以对任意实数均成立.
所以. ………………………………………9分
(Ⅲ)由(Ⅱ)知,
在中,
取,得,即 ①
取,得 ②
取,得,即 ③
②+①得,②+③得.
.
将代入①得.
将代入②得.
.
由(Ⅱ)知,所以对一切实数成立.
故当时,对一切实数成立.
存在常数,使得不等式对一切实数成立,且为满足题设的唯一一组值. ………………………………………14分
说明:其它正确解法按相应步骤给分.
A、20家 | B、16家 | C、10家 | D、8家 |
A.20家
B.16家
C.10家
D.8家
查看习题详情和答案>>
(文)某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算。)在一次实习作业中,某同学调查了A、B、C、D、E五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如下表所示:
|
A |
B |
C |
D |
E |
第一次通话时间 |
3分 |
3分45秒 |
3分55秒 |
3分20秒 |
6分 |
第二次通话时间 |
0分 |
4分 |
3分40秒 |
4分50秒 |
0分 |
第三次通话时间 |
0分 |
0分 |
5分 |
2分 |
0分 |
应缴话费(元) |
|
|
|
|
|
(1)在上表中填写出各人应缴的话费;
(2)设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):
时间段 |
频数累计 |
频数 |
频率 |
累计频率 |
0<t≤3 |
┯ |
2 |
0.2 |
0.2 |
3<t≤4 |
|
|
|
|
4<t≤5 |
|
|
|
|
5<t≤6 |
|
|
|
|
合计 |
正 正 |
|
|
|
(3)若该本地网营业区原来执行的电话收费标准是:每3分钟为0.20元(不足3分钟按3分钟计算)。问这五人这天的实际平均通话费与原通话标准下算出的平均通话费相比,是增多了还是减少了?增或减了多少?
查看习题详情和答案>>
(文)某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算。)在一次实习作业中,某同学调查了A、B、C、D、E五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如下表所示:
| A | B | C | D | E |
第一次通话时间 | 3分 | 3分45秒 | 3分55秒 | 3分20秒 | 6分 |
第二次通话时间 | 0分 | 4分 | 3分40秒 | 4分50秒 | 0分 |
第三次通话时间 | 0分 | 0分 | 5分 | 2分 | 0分 |
应缴话费(元) | | | | | |
(2)设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):
时间段 | 频数累计 | 频数 | 频率 | 累计频率 |
0<t≤3 | ┯ | 2 | 0.2 | 0.2 |
3<t≤4 | | | | |
4<t≤5 | | | | |
5<t≤6 | | | | |
合计 | 正 正 | | | |
(文)某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算。)在一次实习作业中,某同学调查了A、B、C、D、E五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如下表所示:
| A | B | C | D | E |
第一次通话时间 | 3分 | 3分45秒 | 3分55秒 | 3分20秒 | 6分 |
第二次通话时间 | 0分 | 4分 | 3分40秒 | 4分50秒 | 0分 |
第三次通话时间 | 0分 | 0分 | 5分 | 2分 | 0分 |
应缴话费(元) | | | | | |
(2)设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):
时间段 | 频数累计 | 频数 | 频率 | 累计频率 |
0<t≤3 | ┯ | 2 | 0.2 | 0.2 |
3<t≤4 | | | | |
4<t≤5 | | | | |
5<t≤6 | | | | |
合计 | 正 正 | | | |