摘要:(A) (B) (C) (D)

网址:http://m.1010jiajiao.com/timu_id_28495[举报]

一、选择题:(本题每小题5分,共50分)

1

2

3

4

5

6

7

8

9

10

D

B

C

D

D

C

B

A

A

C

 

二、填空题:(本题每小题4分,共16分)

11.      12.     13.    14.

三、解答题(本大题6小题,共84分。解答应写出文字说明,证明过程或演算步骤)

15.(本小题满分14分)

…………………4分

    又

+1>    得B={y|y<或y>+1}……………………8分

∵A∩B=φ

∴  1

+19…………………12分

-2…………………14分

16.(本小题满分14分)

解:(1)

    又    ………6分

(2)因 

 ………8分

,则

…………………10分

…14分

 

 

17.(本小题满分14分)

解:                            (…………………3分)

=(…………………7分)

(1)若,即时,==,(…………10分)

(2)若,即时,

所以当时,=(…………………13分)

(…………………14分)

18.(本小题满分14分)

解:(1)令,即

 由

  ∵,∴,即数列是以为首项、为公差的等差数列, ∴  …………8分

(2)化简得,即

 ∵,又∵时,…………12分

 ∴各项中最大项的值为…………14分

19.(本小题满分14分)

解:(1),由题意―――①

       又―――②

       联立得                       …………5分

(2)依题意得   即 ,对恒成立,设,则

      解

      当   ……10分

      则

      又,所以;故只须   …………12分

      解得

      即的取值范围是       …………14分

20.(本小题满分14分)

解:(1)由

    即函数的图象交于不同的两点A,B;                                               ……4分(2)

已知函数的对称轴为

在[2,3]上为增函数,                          ……………6分

                      ……8分

(3)设方程

                                 ……10分

                                ……12分

的对称轴为上是减函数,      ……14分

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网