摘要:已知数列{an}满足关系式.设
网址:http://m.1010jiajiao.com/timu_id_273747[举报]
已知数列{an}满足a1=7,an+1=3an+2n-1-8n.(n∈N*)
(Ⅰ)李四同学欲求{an}的通项公式,他想,如能找到一个函数f(n)=A•2n-1+B•n+C(A、B、C是常数),把递推关系变成an+1-f(n+1)=3[an-f(n)]后,就容易求出{an}的通项了.请问:他设想的f(n)存在吗?{an}的通项公式是什么?
(Ⅱ)记Sn=a1+a2+a3+…+an,若不等式Sn-2n2>p×3n对任意n∈N*都成立,求实数p的取值范围. 查看习题详情和答案>>
(Ⅰ)李四同学欲求{an}的通项公式,他想,如能找到一个函数f(n)=A•2n-1+B•n+C(A、B、C是常数),把递推关系变成an+1-f(n+1)=3[an-f(n)]后,就容易求出{an}的通项了.请问:他设想的f(n)存在吗?{an}的通项公式是什么?
(Ⅱ)记Sn=a1+a2+a3+…+an,若不等式Sn-2n2>p×3n对任意n∈N*都成立,求实数p的取值范围. 查看习题详情和答案>>
已知数列{an}满足如图所示的程序框图.
(I)写出数列{an}的一个递推关系式;并求数列{an}的通项公式
(Ⅱ)设数列{an}的前n项和Sn,证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
查看习题详情和答案>>
(I)写出数列{an}的一个递推关系式;并求数列{an}的通项公式
(Ⅱ)设数列{an}的前n项和Sn,证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
已知数列{an}满足a1=7,an+1=3an+2n-1-8n(n∈N*)。
(1)李四同学欲求{an}的通项公式,他想,如能找到一个函数f(n)=A·2n-1+B·n+C(A、B、C是常数),把递推关系变成an+1-f(n+1)=3[an-f(n)]后,就容易求出{an}的通项了。请问:他设想的f(n)存在吗?{an}的通项公式是什么?
(2)记Sn=a1+a2+a3+…+an,若不等式Sn-2n2>p×3n 对任意n∈N*都成立,求实数p的取值范围。