摘要:递增极大值4递减极小值0递增
网址:http://m.1010jiajiao.com/timu_id_259211[举报]
设函数
(1)当时,求曲线
处的切线方程;
(2)当时,求
的极大值和极小值;
(3)若函数在区间
上是增函数,求实数
的取值范围.
【解析】(1)中,先利用,表示出点
的斜率值
这样可以得到切线方程。(2)中,当
,再令
,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了
在区间
导数恒大于等于零,分离参数求解范围的思想。
解:(1)当……2分
∴
即为所求切线方程。………………4分
(2)当
令………………6分
∴递减,在(3,+
)递增
∴的极大值为
…………8分
(3)
①若上单调递增。∴满足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数
的取值范围是
查看习题详情和答案>>
对于函数f(x)=x3-3x2,给出命题:
①f(x)是增函数,无极值;②f(x)是减函数,无极值;③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.
其中正确的命题有( )
A.1个 B.2个 C.3个 D.4个
查看习题详情和答案>>
对于函数f(x)=x3-3x2,给出以下命题:
①f(x)是增函数,无极值;②f(x)是减函数,无极值;③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.
其中正确的命题有
A.1个 B.2个 C.3个 D.4个
查看习题详情和答案>>