摘要:21.定义在关于原点对称的区域上的任意函数都可以表示成一个奇函数和一个偶函数之和.已知.

网址:http://m.1010jiajiao.com/timu_id_253413[举报]

 

一、选择题:(本大题共12小题,每小题5分,共60分)

20080801

2. 提示: 故选D

3. 提示:已知得d=3,a5=14,=3a5=42.故选B

4. 提示: 判断cosα>0,sinα<0,数形结合.故选B

20090505

=  故选C

6. 提示: 如图,取G的极端位置, 问题转化为求AE与的位置关系,取AD的中点M,连接MF、可证 可见AE与FG所成的角为  A故选D

7. 提示: 当x>0时,的图像相同,故可排除(A)、(C)、(D).故选B

8.=5,得3n=5r+10 , 当r=1时,n=5.故选C

9.提示由,得,所以,  点P的轨迹是圆(除去与直线AB的交点).故选B

 

 

 

10.提示:令f(x)= x2?(a2+b2?6b)x+ a2+b2+2a?4b+1,则由题意有f(0)= a2+b2+2a?6b+1≤0且f(1)=2a+2b+2≥0,即(a+1)2+(b?2)2≤4且a+b+1≥0,在直角坐标平面aOb上作出其可行域如图所示,而a2+b2+4a=(a+2)2+b2?4的几何意义为|PA|2?4(其中P(a,b)为可行域内任意的一点,A(?2,0)). 由图可知,当P点在直线l:a+b+1=0上且AP⊥l时取得最小值;当P点为AC(C为圆(a+1)2+(b?2)2≤4的圆心)的延长线与圆C的交点时达到最大值. 又A点的直线l的距离为,|AC|=,所以a2+b2+4a的最大值和最小值分别为?和(+2)2?4=5+4.故选B.

11.提示: 易知数列{an}是以3为周期的数列,a1=2,  a2=   ,   a3= ,  a4 =2, 

a2009=故选B

12.提示: ∵是定义在R上的奇函数,

,又由已知

,(A)成立;

∴(B)成立;当,又为奇函数,

,且

∴(C)即

∴(C)成立;对于(D),有,由于的符号不确定,

未必成立。故选D

 

 

 

二、填空题:(本大题共4小题,每小题5分,共20分)

13.5;提示:  Tr+1=(x)n-r(-)r,由题意知:-+=27n=9

∴展开式共有10项,二项式系数最大的项为第五项或第六项,故项的系数最大的项为第五项。

14.(0,1)∪(1,10) ;提示: 当a>1时,不等式化为10-ax>a,要使不等式有解,必须10-a>0

∴1<a<10

当0<a<1时,不等式化为0<10-ax<a10-a<ax<10不等式恒有解

故满足条件a的范围是(0,1)∪(1,10)

15. ;提示: P=1-=

16. 提示:当直角三角形的斜边垂直与平面时,所求面积最大。

三、解答题:(本大题共6小题,共70分)

17.(本大题10分)(1)不是,假设上的生成函数,则

存在正实数使得恒成立,令,得,与

矛盾,

所以函数一定不是上的生成函数…………5分

(2)设,因为

所以,当且仅当时等号成立,

  …………………………………………10分

 

18.(Ⅰ)连接A1C.∵A1B1C1-ABC为直三棱柱,

∴CC1⊥底面ABC,∴CC1⊥BC.

       ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

       ∴与平面A1C1CA所成角,

与平面A1C1CA所成角为.…………4分

(Ⅱ)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM,

       ∵BC⊥平面ACC­1A1,∴CM为BM在平面A1C1CA内的射影,

       ∴BM⊥A1G,∴∠CMB为二面角B―A1D―A的平面角,

       平面A1C1CA中,C1C=CA=2,D为C1C的中点,

       ∴CG=2,DC=1 在直角三角形CDG中,

       即二面角B―A1D―A的大小为.……………………8分

(Ⅲ)取线段AC的中点F,则EF⊥平面A1BD.

证明如下:

∵A1B1C1―ABC为直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,

∵EF在平面A1C1CA内的射影为C1F,当F为AC的中点时,

C1F⊥A1D,∴EF⊥A1D.

同理可证EF⊥BD,∴EF⊥平面A1BD.……………………12分

19.(解:(1)分别在下表中,填写随机变量的分布列:

…4分

   (2)

    

    

 …………………….. 9分

  ∴周长的分布列为:

  ……….. 10分

   …. 12分

20.(Ⅰ) 设C(x, y),

, ,  

,

∴ 由定义知,动点C的轨迹是以A、B为焦点,

长轴长为的椭圆除去与x轴的两个交点.

.  ∴

∴ W:   . …………………………………………… 2分

(Ⅱ) 设直线l的方程为,代入椭圆方程,得

整理,得.         ①………………………… 5分

因为直线l与椭圆有两个不同的交点P和Q等价于

,解得

∴ 满足条件的k的取值范围为 ………… 7分

(Ⅲ)设P(x1,y1),Q(x2,y2),则=(x1+x2,y1+y2),

由①得.                 ②

                ③

因为, 所以.……………………… 11分

所以共线等价于

将②③代入上式,解得

所以存在常数k,使得向量共线.…………………… 12分

21.解:(1)由题意得

解得,将代入,化简得

;………………4分    

(2)由题知,因为,所以

,则

并且,因此

从而,得,………..8分

(2)因为,故

从而………………12分

22.解: Ⅰ)∵=a+,x∈(0,e),∈[,+∞………………1分

   (1)若a≥-,则≥0,从而f(x)在(0,e)上增函数.

       ∴f(x)max =f(e)=ae+1≥0.不合题意. …………………………………3分

   (2)若a<-,则由>0a+>0,即0<x<-

       由f(x)<0a+<0,即-<x≤e

       ∴f(x)=f(-)=-1+ln(-).

       令-1+ln(-)=-3,则ln(-)=-2.∴-=e

       即a=-e2. ∵-e2<-,∴a=-e2为所求. ……………………………6分

   (Ⅱ)当a=-1时,f(x)=-x+lnx,=-1+=

       当0<x<1时,>0;当x>1时,<0.

       ∴f(x)在(0,1)上是增函数,在(1,+∞)上减函数.

       从而f(x)=f(1)=-1.∴f(x)=-x+lnx≤-1,从而lnx≤x-1.   ………8分

       令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-

   (1)当0<x<2时,有g(x)≥x-(1+)(x-1)-=>0.

   (2)当x≥2时,g′(x)=1-[(-)lnx+(1+)?]=

=

       ∴g(x)在[2,+∞上增函数,

g(x)≥g(2)=

       综合(1)、(2)知,当x>0时,g(x)>0,即|f(x)|>

故原方程没有实解.       ……………………………………12分

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网