摘要:又 平面.所以当是棱的中点时.平面.解法二
网址:http://m.1010jiajiao.com/timu_id_24152[举报]
在棱长为的正方体中,是线段的中点,.
(1) 求证:^;
(2) 求证://平面;
(3) 求三棱锥的表面积.
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。
第三问中,是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, 面积为. 所以三棱锥的表面积为.
解: (1)证明:根据正方体的性质,
因为,
所以,又,所以,,
所以^. ………………4分
(2)证明:连接,因为,
所以为平行四边形,因此,
由于是线段的中点,所以, …………6分
因为面,平面,所以∥平面. ……………8分
(3)是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, ……………………10分
面积为. 所以三棱锥的表面积为
查看习题详情和答案>>
下列命题正确的是( )
A.因为直线向两方无限延伸,所以直线不可能在平面内
B.如果线段的中点在平面内,那么线段在平面内
C.如果线段上有一个点不在平面内,那么线段就不在平面内
D.当平面经过直线时,直线上可以有不在平面内的点
查看习题详情和答案>>