摘要:11.定义在R上的函数f(x).g(x)都有反函数.且f(x+1)与g-1(x-2)的图象关于y-x=0对称.当g(15)=2005时.f(16)之值为 A.2005 B.2006 C.2007 D.2008
网址:http://m.1010jiajiao.com/timu_id_23125[举报]
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
D
D
A
C
A
A
D
C
C
A
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上。
13. 10 14. 15.
①②③ 16. 8
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
17.
18.(1)x>1或x<-1
(2)a>1时,
0<a≤1/2时,不存在
1/2<a<1时,
19. f (2+x) = f (2-x) ∴f (4-2x) = f (2x)
0≤2x≤2,即0≤x≤1,无解
2≤2x≤4,即1≤x≤2,由f (x)<f (4-2x)得4/3<x≤2
20.P1=11/12 P2=13/36
21.
22.(1)
(2)
定义在R+上的函数f(x),g(x)满足函数f(x)=x2-alnx在[1,2]上为增函数,g(x)=x-a
在(0,1)为减函数.
(Ⅰ)求f(x),g(x)的解析式;
(Ⅱ)当b>-1时,若f(x)≥2bx-
在x∈(0,1]内恒成立,求b的取值范围.
查看习题详情和答案>>
x |
(Ⅰ)求f(x),g(x)的解析式;
(Ⅱ)当b>-1时,若f(x)≥2bx-
1 |
x2 |
定义在R上的函数f(x),g(x)满足f(x)=-f(-x),g(x)=g(x+2),若f(-1)=g(1)=3且g(2nf(1))=nf(f(1)+g(-1))+2(n∈N),则g(-6)+f(0)=______.
查看习题详情和答案>>
定义在R+上的函数f(x),g(x)满足函数f(x)=x2-alnx在[1,2]上为增函数,g(x)=x-a
在(0,1)为减函数.
(Ⅰ)求f(x),g(x)的解析式;
(Ⅱ)当b>-1时,若f(x)≥2bx-
在x∈(0,1]内恒成立,求b的取值范围.
查看习题详情和答案>>
x |
(Ⅰ)求f(x),g(x)的解析式;
(Ⅱ)当b>-1时,若f(x)≥2bx-
1 |
x2 |