网址:http://m.1010jiajiao.com/timu_id_230819[举报]
一、选择题
2,4,6
二、填空题
13. 14.3 15.-192 16. 22.2
三、解答题
17.解:(1)∵
∴①……………………2分
∴
∴②……………………4分
联立①,②解得:……………………6分
(2)
……………………10分
∴……………………11分
当
此时……………………12分
18.解:以D1为原点,D1A1所在直线为x轴,D1C1所在直线为y轴,D1D所在直线为z轴建立空间直角坐标系,
则D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2)P(1,1,4)………………2分
(1)∵
∴PA⊥B1D1.…………………………4分
(2)平面BDD1B1的法向量为……………………6分
设平面PAD的法向量,则n⊥
∴…………………………10分
设所求锐二面角为,则
……………………12分
19.解:(1)从50名教师随机选出2名的方法数为
选出2人使用版本相同的方法数为
故2人使用版本相同的概率为:
…………………………5分
(2)∵,
0
1
2
P
∴的分布列为
………………10分
∴……………………12分
(可以不扣分)
20.解:(1)依题意,
即
两式相减得,得
∴……………………4分
当n=1时,
∴=1适合上式……………………5分
故…………………………6分
(2)由题意,
不等式恒成立,即恒成立.…………11分
经检验:时均适合题意(写出一个即可).……………………12分
21.解:(1)设,
由条件知
故C的方程为:……………………4分
(2)由
∴…………………………5分
设l与椭圆C交点为
(*)
……………………7分
∵
消去
整理得………………9分
,
因,
容易验证所以(*)成立
即所求m的取值范围为………………12分
22.(1)证明:假设存在使得
∵…………………………2分
∴上的单调增函数.……………………5分
∴是唯一的.……………………6分
(2)设
∴上的单调减函数.
∴……………………8分
∴…………10分
∵…………12分
∴为钝角
∴△ABC为钝角三角形.……………………14分
(本小题满分12分)已知空间向量
(1)求及的值;
(2)设函数的最小正周期及取得最大值时x的值。
已知直三棱柱中, , , 是和的交点, 若.
(1)求的长; (2)求点到平面的距离;
(3)求二面角的平面角的正弦值的大小.
【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3
第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为
解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 …………… 5分
(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分
(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB
CHE为二面角C-AB-C的平面角. ……… 9分
sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分
解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ……………………… 3分
=(2, -, -), =(0, -3, -h) ……… 4分
·=0, h=3
(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)
点A到平面ABC的距离为H=||=……… 8分
(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)
二面角C-AB-C的大小满足cos== ……… 11分
二面角C-AB-C的平面角的正弦大小为