摘要:A.ab导线中通有从a到b方向的电流 B.ab导线中通有从b到a方向的电流 C.cd导线中通有从c到d方向的电流 D.cd导线中通有从d到c方向的电流

网址:http://m.1010jiajiao.com/timu_id_224333[举报]

 

1. B    根据磁感线的疏密程度可以判断出a、b两处的磁感应强度的大小不等,Ba<Bb,即B正确;同一通电导线放在a处受力的情况大小不一定,因为放入时的位置(即放入时与磁感线的方向)不确定,则其受安培力的大小就不一定.

2. C    地球自转等效成环形电流,南极为磁场N极,由右手定则可知地球带负电,地球转速变慢使环形电流电流减小,故磁场减弱,所以选C.

3. AB    根据安培定则和磁感应强度的迭加原理即可知.

4. ABC  提示:根据已知条件画出运动的轨迹和基本公式即可判断.

5. AB    若小球A带正电,小球A受重力和A、B之间的库仑力的作用(且库仑力为斥力),若重力的大小和库仑力的大小相反,则撤去绝缘板后,重力和库仑力仍大小相等而方向相反,故小球A仍处于静止状态,A正确;若库仑力大于重力,则可由左手定则判断B正确.

6. B    电子进入磁场时向上偏,刚好从C点沿切线方向穿出是一临界条件,要使电子从BC边穿出,其运动半径应比临界半径大,由可知,磁感应强度只要比临界时的小就可以了,如题图,由对称性作辅助线,由几何关系可得,半径,又,解得,故选B.

7. AD    由题意知,带正电的粒子从中央线的上方离开混合场,说明在进入电、磁场时,竖直向上的洛仑兹力大于竖直向下的电场力.在运动过程中,由于电场力做负功,洛仑兹力不做功,所以粒子的动能减小,从而使所受到的磁场力可能比所受电场力小,选项A正确.又在运动过程中,洛仑兹力的方向不断发生改变,其加速度大小是变化的,运动轨迹是复杂的曲线而并非简单的抛物线,所以选项B、C错误.由动能定律得:,故选项D正确,综合来看,选项A、D正确.

8. C   根据电子运动的轨迹知在两导线之间的磁场方向垂直于两导线所在的平面,只有ab中由ba的电流或cd中从cd的电流才能产生这样的磁场,又从电子运动轨迹在向cd边靠近时曲率半径变小,由知与cd边越近,B越强,可见是由cd中的电流产生的,只有C正确.

9. BD   本题考查带电体在复合场中的运动,在分析时要注意随着速度的变化,洛伦兹力发生变化,导致杆对小球的弹力发生变化,因此摩擦力发生变化,小球的运动状态发生变化.

10. C    带电粒子在匀强磁场中做圆周运动的轨道半径r=mv/qB,设α粒子第一次穿过金属片的速度v/,则,所以v/=0.9v,动能减少.根据阻力及电量恒定,α粒子每穿过一次金属片,动能都减少0.19E,由,故α粒子穿过5次后陷入金属中.

11. B=(6分)  控制变量法(2分)

解析:从表中数据分析不难发现B/I=k1Br=k2,所以有B=kI/r,再将某一组B、I、r值代入上式得k=2×10-7Tm/A.所以得出磁感应强度B与电流I及距离r的关系式为B=

12.(1)A (2分)  逆时针 (2分)

(2)运动电荷受到了磁场力(2分)  阴  (2分) 

(3)吸引(2分)    排斥(2分)

13.解析:(1)设小球第一次到达最低点时速度为v,则由动能定理可得(2分)

在最低点根据牛顿第二定律得,(2分)

解得C(2分)

根据左手定则可判断小球带负电(3分)

(2)根据机械能守恒可知,小球第二次到达最低点时速度小仍为v,此时悬线对小球的拉力为F,由牛顿第二定律得,(3分)

解得N(2分)

14.解析:(1)由牛顿第二定律可求得粒子在磁场中运动的    半径,(1分)

m>(2分)

因此要使粒子在磁场中运动的时间最长,则粒子在磁场中运动的圆弧所对应的弦长最长,从右图中可以看出,以直径ab为弦、R为半径所作的圆,粒子运动的时间最长. (2分)

设该弦对应的圆心角为,而(1分)

运动时间(2分)

,故s(2分)

(2)(2分)

粒子在磁场中可能出现的区域:如图中以Oa为直径的半圆及以a为圆心Oa为半径的圆与磁场相交的部分.绘图如图. (2分)

15.解析:如图所示,带电小球在做圆周运动的过程中受到电场力FE、洛伦兹力FB和弹力FN的作用,其合力即为小球做圆周运动的向心力,由图可知:

(3分)

(2分)

其中FB=qvBFE=kQq/R2,代入上式可得,

(2分)

上式中mRBqkQ均为常数,所以FNv的二次函数.对照y=ax2+bx+c,有a=m/Rb=Bqc=kQq/R2. (2分)

a>0,故FN有最小值,且当时,FN最小(临界条件),最小值为.(2分)

可见,随着小球运动速度的增大,圆环对小球的弹力FN先减小、后增大,且临界状态(最小值)出现在v=BqR/2m时. (3分)

16.解析:(1)要求光斑的长度,只要找到两个边界点即可.初速度沿x轴正方向的电子,沿弧OB运动到P;初速度沿y轴正方向的电子,沿弧OC运动到Q

设粒子在磁场中运动的半径为R,由牛顿第二定律得,

(4分)

,从图中可以看出(4分)

(2)沿任一方向射入第一象限的电子经磁场偏转后都能垂直打到荧光屏MN上,需加最小面积的磁场的边界是以(0,R)为圆心,半径为R的圆的一部分,如图中实线所示. (4分)

所以磁场范围的最小面积.(4分)

17.解析:(1)用左手定则判断出:磁场方向为-x方向或-y方向. (4分)

(2)在未加匀强磁场时,带电小球在电场力和重力作用下落到P点,设运动时间为t

小球自由下落,有H=gt2/2(1分)

小球沿x轴方向只受电场力作用,Fe=qE(1分)

小球沿x轴的位移为l=at2/2(1分)

小球沿x轴方向的加速度为a=Fe/m(1分)

联立求解,得E=mgl/qH. (2分)

(3)带电小球在匀强磁场和匀强电场共存的区域运动时,洛伦兹力不做功.电场力做功为:We=qEl,(1分)

重力做功为WG=mgH(1分)

设落到N点时速度大小为v,根据动能定理得,(2分)

解得,(2分)

18.解析:(1)因带电质点做匀速圆周运动,故电场力与重力平衡,①(1分)

两板间电场强度③(1分)

两板间电压④(1分)

由闭合电路欧姆定律得,⑤(1分)

由①~⑤得,(2分)

     (2)由题意知,电场力竖直向上,故质点带负电,由左手定则得洛伦兹力竖直向下,由平衡条件可得,⑥(2分)

因两极板间电压

⑦(2分)

由⑥⑦解得,⑧(1分)

    (3)因板间电压变为

故电场力(2分)

由动能定理得,⑩(2分)

由⑧⑨⑩解得.(1分)

 

 选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)

A.(选修模块3-3)(12分)

⑴下列说法中正确的是  ▲ 

A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力

B.扩散运动就是布朗运动

C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述

⑵将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是  ▲  m(保留一位有效数字).

⑶如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

①求活塞停在B点时缸内封闭气体的压强;

②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).

B.(选修3-4试题)

⑴(4分)下列说法正确的是  ▲  

A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。

B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调

C.当波源或者接受者相对于介质运动时,接受者往往会发现波的频率发生了变化,这种现象叫多普勒效应。

D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆静止时的长度小

⑵如图所示,真空中有一顶角为75o,折射率为n =的三棱镜.欲使光线从棱镜的侧面AB进入,再直接从侧面AC射出,求入射角θ的取值范围为   ▲  

 

 

⑶(4分) 一列向右传播的简谐横波在某时刻的波形图如图所示。波速大小为0.6m/sP质点的横坐标x = 96cm。求:

①波源O点刚开始振动时的振动方向和波的周期;

②从图中状态为开始时刻,质点P第一次达到波峰时间。

C.(选修模块3-5)(12分)

⑴.氦原子被电离一个核外电子,形成类氢结构的氦离子。已知基态的氦离子能量为E1 =-54.4 eV,氦离子能级的示意图如图所示。在具有下列能量的光子中,不能被基态氦离子吸收的是   ▲ 

A.60.3 eV          B. 51.0 eV

C.43.2 eV          D.54.4 eV

⑵一个静止的,放出一个速度为2.22×107m/s的粒子,同时产生一个新核,并释放出频率为ν=3×1019Hz的γ光子。写出这种核反应方程式    ▲   ;这个核反应中产生的新核的速度为  ▲  ;因γ辐射而引起的质量亏损为  ▲  。(已知普朗克常量h=6.63×10-34J·s)

⑶如图,滑块AB的质量分别为m1m2m1m2,置于光滑水平面上,由轻质弹簧相连接,用一轻绳把两滑块拉至最近,弹簧处于最大压缩状态后绑紧,接着使两滑块一起以恒定的速度v0向右滑动.运动中某时刻轻绳突然断开,当弹簧恢复到其自然长度时,滑块A的速度正好为零。则:

①弹簧第一次恢复到自然长度时,滑块B的速度大小为   ▲

②从轻绳断开到弹簧第一次恢复到自然长度的过程中,弹簧释放的弹性势能Ep =   ▲

 

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网