摘要:⑶请根据上面的结论猜想:椭圆的“左特征点 是怎样的点?并证明你的结论.
网址:http://m.1010jiajiao.com/timu_id_21229[举报]
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
C
C
A
C
B
C
C
B
B
C
二、填空题
13.() 14.x=0或y=0 15.4 16.2/3 17.20 18.①④
三、解答题
19.解:A(―4,2)关于直线:对称的点为,因为直线是中的平分线,可以点在直线上,故直线的方程是,由,,则是以为直角的三角形,,10
20.解:由,,设双曲线方程为,椭圆方程为,它们的焦点,则
,又,,双曲线方程为,椭圆方程为
21.解:,设椭圆方程为①,设过和的直线方程为②,将②代入①得-③,设,的中点为代入,,,由③,,解得
22.解:⑴设直线方程为:代入,得
,另知直线与半圆相交的条件为,设,则,,点位于的右侧,应有,即,(亦可求出的横坐标)
⑵若为正,则点到直线距离
与矛盾,在⑴条件下不可能是正△.
23.⑴由题意设椭圆方程为:,则解得: ,所以椭圆方程为:
⑵设“左特征点”,设,为的平分线,,,下面设直线的方程为,代入得:,代入上式得解得
⑶椭圆的“左特征点”M是椭圆的左准线和x轴的交点证明如下:
证明:设椭圆的左准线与x轴相交于点M,过点A、B分别作的垂线,垂足分别为点C、D。据椭圆第二定义得,
∵∥∥,∴,
∴∵与均为锐角,∴。
∴。∴为的平分线。故点为椭圆的“左特征点”。
为了减少碳排放量,某工厂进行技术改造,改造后生产甲产品 过程中记录产量x(吨)与相应的煤消耗量y(吨)数据如下表:
(1)请画出上表数据的散点图;
(2)请根据上面的数据,求出y关于x的线性回归方程
=bx+a;
(3)已知该厂技术改造前10吨甲产品需要煤12吨,试根据第二问求出的线性回归方程,预测生产10吨甲产品需要煤比技改前降低多少吨煤?
查看习题详情和答案>>
X | 3 | 4 | 5 | 6 | ||||
Y |
|
3 | 4 |
|
(2)请根据上面的数据,求出y关于x的线性回归方程
? |
y |
(3)已知该厂技术改造前10吨甲产品需要煤12吨,试根据第二问求出的线性回归方程,预测生产10吨甲产品需要煤比技改前降低多少吨煤?
为了减少碳排放量,某工厂进行技术改造,改造后生产甲产品 过程中记录产量x(吨)与相应的煤消耗量y(吨)数据如下表:
(1)请画出上表数据的散点图;
(2)请根据上面的数据,求出y关于x的线性回归方程;
(3)已知该厂技术改造前10吨甲产品需要煤12吨,试根据第二问求出的线性回归方程,预测生产10吨甲产品需要煤比技改前降低多少吨煤?
查看习题详情和答案>>
X | 3 | 4 | 5 | 6 |
Y | 3 | 4 |
(2)请根据上面的数据,求出y关于x的线性回归方程;
(3)已知该厂技术改造前10吨甲产品需要煤12吨,试根据第二问求出的线性回归方程,预测生产10吨甲产品需要煤比技改前降低多少吨煤?
查看习题详情和答案>>
设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量
=(x1,y1),
=(x2,y2),
=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量
=λ
+(1-λ)
,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|
|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:①A、B、N三点共线;②“函数y=5x2在[0,1]上可在标准1下线性近似”; ③“函数y=5x2在[0,1]上可在标准
下线性近似”. 其中所有正确结论的序号为( )
OA |
OB |
OM |
ON |
OA |
OB |
MN |
5 |
4 |
A、①、② | B、②、③ |
C、①、③ | D、①、②、③ |
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,
得到如下的列联表:
已知在全部105人中抽到随机抽取1人为优秀的概率为
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率. 查看习题详情和答案>>
得到如下的列联表:
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 105 |
2 |
7 |
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率. 查看习题详情和答案>>
(2012•海口模拟)衡阳市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式与临界值表:K2=
.
查看习题详情和答案>>
3 |
11 |
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式与临界值表:K2=
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |