网址:http://m.1010jiajiao.com/timu_id_21040[举报]
1-12题 AAAAA CDDCD BB
13、等腰梯形;14、;15、充分非必要;16、186
17、
18、解:由+25+|-5|≥,而,等号当且仅当时成立;且,等号当且仅当时成立;所以,,等号当且仅当时成立;故。
19、(Ⅰ)表示当甲公司不投入宣传费时,乙公司要回避失败的风险至少要投入11万元的宣传费;表示当乙公司不投入宣传费时,甲公司要回避失败的风险至少要投入21万元的宣传费.
(Ⅱ)设甲、乙公司投入的宣传费分别为、万元,当且仅当①,
且……②时双方均无失败的风险,
由①②得易解得,
所以,故.
20、解:(1) 令g(x)=f(x)-2x=ln(x+m)-2x, 则g(x)=-2
∵x≥2-m ∴x+m≥2 ∴≤ 从而g(x)=-2≤-2<0
∴g(x)在[2-m, +上单调递减 ∴x=2-m时,
g(x)=f(x)-2x最大值=ln(2-m+m)-2(2-m)=ln2+
(2) 假设f(x)=x还有另一解x=() 由假设知
-=f()-f()=f(x)?(-) x[2-m, +
故f(x)=1, 又∵f(x)=≤<1 矛盾
故f(x)=x有唯一解x=
21、
22、解:(1)若,则在定义域内存在,
使得,∵方程无解,
∴.
,
当时,, 当时,由,
得。
∴ .
,
又∵函数图象与函数的图象有交点,设交点的横坐标为,
则,其中,
∴,即 .
(Ⅰ)试解释f(0)=10,g(0)=20的实际意义;
(Ⅱ)设f(x)=
1 |
4 |
x |
(1)请解释f(0)、g(0)的实际意义;
(2)当f(x)=x+4,g(x)=
x |
(13分)甲、乙两公司同时开发同一种新产品,经测算,对于函数,当甲公司投入万元作宣传时,若乙公司投入的宣传费小于万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入万元作宣传时,若甲公司投入的宣传费小于万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.
(1)若,,试解释它们的实际意义;
(2)设,,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费? 查看习题详情和答案>>