摘要:(I)设曲线在点(1.f(1))处的切线为l.若l与圆(x+1)2+y2=1相切.求a的值,
网址:http://m.1010jiajiao.com/timu_id_20978[举报]
已知曲线f(x)=ax+blnx-1在点(1,f(1))处的切线为直线y=0.
(1)求实数a,b的值;
(2)设函数,其中m为常数.
(i)求g(x)的单调递增区间;
(ii)求证:当1<m<3,x∈(1,e)(其中e=2.71828…)时,总有成立.
查看习题详情和答案>>
已知曲线f(x)=ax+blnx-1在点(1,f(1))处的切线为直线y=0.
(1)求实数a,b的值;
(2)设函数,其中m为常数.
(i)求g(x)的单调递增区间;
(ii)求证:当1<m<3,x∈(1,e)(其中e=2.71828…)时,总有成立.
查看习题详情和答案>>
(1)求实数a,b的值;
(2)设函数,其中m为常数.
(i)求g(x)的单调递增区间;
(ii)求证:当1<m<3,x∈(1,e)(其中e=2.71828…)时,总有成立.
查看习题详情和答案>>
(2013•天津)设a∈[-2,0],已知函数f(x)=
(Ⅰ) 证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ) 设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3>-
.
查看习题详情和答案>>
|
(Ⅰ) 证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ) 设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3>-
1 |
3 |