网址:http://m.1010jiajiao.com/timu_id_20495[举报]
设椭圆的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若,证明直线
的斜率
满足
【解析】(1)解:设点P的坐标为.由题意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以椭圆的离心率
(2)证明:(方法一)
依题意,直线OP的方程为,设点P的坐标为
.
由条件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依题意,直线OP的方程为,设点P的坐标为
.
由P在椭圆上,有
因为,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
查看习题详情和答案>>
在四棱锥中,
平面
,底面
为矩形,
.
(Ⅰ)当时,求证:
;
(Ⅱ)若边上有且只有一个点
,使得
,求此时二面角
的余弦值.
【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,
又因为,
………………2分
又,得证。
第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
设BQ=m,则Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知时,存在点Q使得
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得
由此知道a=2, 设平面POQ的法向量为
,所以
平面PAD的法向量
则的大小与二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值为
解:(Ⅰ)当时,底面ABCD为正方形,
又因为,
又
………………3分
(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,
则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
设BQ=m,则Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知时,存在点Q使得
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,
设平面POQ的法向量为
,所以
平面PAD的法向量
则的大小与二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值为
查看习题详情和答案>>