网址:http://m.1010jiajiao.com/timu_id_198543[举报]
用数学归纳法证明:
.
【解析】首先证明当n=1时等式成立,再假设n=k时等式成立,得到等式
,
下面证明当n=k+1时等式左边
,
根据前面的假设化简即可得到结果,最后得到结论.
查看习题详情和答案>>
在数列中,
记
(Ⅰ)求、
、
、
并推测
;
(Ⅱ)用数学归纳法证明你的结论.
【解析】第一问利用递推关系可知,、
、
、
,猜想可得
第二问中,①当时,
=
,又
,猜想正确
②假设当时猜想成立,即
,
当时,
=
=,即当
时猜想也成立
两步骤得到。
(2)①当时,
=
,又
,猜想正确
②假设当时猜想成立,即
,
当时,
=
=,即当
时猜想也成立
由①②可知,对于任何正整数都有
成立
查看习题详情和答案>>
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
当时
单调递减;当
时
单调递增,故当
时,
取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,
单调递增;当
时,
单调递减.
故当时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,的取值集合为
.
(Ⅱ)由题意知,令
则
令,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即
从而,
又
所以因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>
已知,(其中
)
⑴求及
;
⑵试比较与
的大小,并说明理由.
【解析】第一问中取,则
;
…………1分
对等式两边求导,得
取,则
得到结论
第二问中,要比较与
的大小,即比较:
与
的大小,归纳猜想可得结论当
时,
;
当时,
;
当时,
;
猜想:当时,
运用数学归纳法证明即可。
解:⑴取,则
;
…………1分
对等式两边求导,得,
取,则
。 …………4分
⑵要比较与
的大小,即比较:
与
的大小,
当时,
;
当时,
;
当时,
;
…………6分
猜想:当时,
,下面用数学归纳法证明:
由上述过程可知,时结论成立,
假设当时结论成立,即
,
当时,
而
∴
即时结论也成立,
∴当时,
成立。
…………11分
综上得,当时,
;
当时,
;
当时,
查看习题详情和答案>>
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (
N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由
得
. ……2分
若存在由
得
,
从而有,与
矛盾,所以
.
从而由得
得
. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一.
……10分
证法三:(利用对偶式)设,
,
则.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当时,
,命题成立;
②假设时,命题成立,即
,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
查看习题详情和答案>>