摘要:(3)两人各掷一枚硬币.“同时出现正面 的概率可以算得为.由于“不出现正面 是上述事件的对立事件.所以它的概率等于这样做对吗?说明道理.解: (1)不能.因为甲命中目标与乙命中目标两事件不互斥.?(2)能.因为命中靶的内圈和命中靶的其余部分是互斥事件.?
网址:http://m.1010jiajiao.com/timu_id_197719[举报]
(1)两人各掷一枚硬币,“同时出现正面”的概率可以算得为,由于“不出现正面”是上述事件的对立事件,所以它的概率等于1-=.这样计算对吗?为什么?
(2)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论,目标被命中的概率等于0.65+0.60=1.25?为什么?
(3)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论,目标被命中的概率等于0.25+0.50=0.75?为什么?
查看习题详情和答案>>
(1)两人各掷一枚硬币,“同时出现正面”的概率可以算得为,由于“不出现正面”是上述事件的对立事件,所以它的概率等于1-=.这样计算对吗?为什么?
(2)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论,目标被命中的概率等于0.65+0.60=1.25?为什么?
(3)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论,目标被命中的概率等于0.25+0.50=0.75?为什么?
查看习题详情和答案>>
(1)两人各掷一枚硬币,“同时出现正面”的概率可以算得为,由于“不出现正面”是上述事件的对立事件,所以它的概率等于1-,这样计算对吗?为什么?
(2)甲乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论,目标被命中的概率等于0.65+0.60=1.25?为什么?
(3)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论,目标被命中的概率等于0.25+0.50=0.75?为什么?
查看习题详情和答案>>