摘要:故当时.有.
网址:http://m.1010jiajiao.com/timu_id_193007[举报]
已知函数=.
(Ⅰ)当时,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当时,=,
当≤2时,由≥3得,解得≤1;
当2<<3时,≥3,无解;
当≥3时,由≥3得≥3,解得≥8,
∴≥3的解集为{|≤1或≥8};
(Ⅱ) ≤,
当∈[1,2]时,==2,
∴,有条件得且,即,
故满足条件的的取值范围为[-3,0]
查看习题详情和答案>>
如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O处后发现,在南偏西20°、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东40°的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ°的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出sin(θ°+20°)的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)
查看习题详情和答案>>
如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O处后发现,在南偏西20°、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东40°的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ°的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出sin(θ°+20°)的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)
查看习题详情和答案>>
查看习题详情和答案>>