网址:http://m.1010jiajiao.com/timu_id_160088[举报]
一、BDCBA,BDCDC,BB
二、13. 14.8; 15.; 16. ③④
三、17、
解:(Ⅰ)
……………2分
由题意知对任意实数x恒成立,
得,
………………………………………………………6分
(Ⅱ)由(Ⅰ)知
由,解得
所以,的单调增区间为……………………12分
18、
解:(Ⅰ)证明取SC的中点R,连QR, DR.。
由题意知:PD∥BC且PD=BC;
QR∥BC且QP=BC,
QR∥PD且QR=PD。
PQ∥PR,又PQ面SCD,PQ∥面SCD. …………6分
(Ⅱ)法一:
…………12分
(Ⅱ)法二:以P为坐标原点,PA为x轴,PB为y轴,PS为z轴建立空间直角坐标系,则S(),B(),C(),Q(),
面PBC的法向量为(),设为面PQC的法向量,
由
COS
…………12分
19、解
设A,B两点的坐标为()、()则
(Ⅰ)经过A、B两点的直线方程为
由得:
令得:
从而
(否则,有一个为零向量)
代入(1)得
始终经过这个定点 …………………(6分)
(Ⅱ)设AB中点的坐标为(),则
又
即
AB的中点到直线的距离d为:
因为d的最小值为 ……………(12分)
20、解:(Ⅰ)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码.
…………………………………………………………………4分
(Ⅱ)由题意可知,ξ的取值为2,3,4三种情形.
若ξ= 3,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2,3或1,2,4.
若
(或用求得). ………………………………………………8分
的分布列为:
ξ
2
3
4
p
……………………………………………12分
21、
(Ⅰ)
时,,即
当时,
即
在上是减函数的充要条件为 ………(4分)
(Ⅱ)由(Ⅰ)知,当时为减函数,的最大值为;
当时,
当时,当时
即在上是增函数,在上是减函数,时取最大值,最大值为
即 ………………(9分)
(Ⅲ)在(Ⅰ)中取,即
由(Ⅰ)知在上是减函数
,即
,解得:或
故所求不等式的解集为[ ……………(13分)
22、
解::⑴
,
,即为的表达式。 (6分)
⑵,,又()
要使成立,只要,即,
即为所求。
⑶
故有
(13分)
(本小题满分13分)已知函数(其中且为常数)的图像经过点A、B.是函数图像上的点,是正半轴上的点.
(1) 求的解析式;
(2) 设为坐标原点,是一系列正三角形,记它们的边长是,求数列的通项公式;
(3) 在(2)的条件下,数列满足,记的前项和为,证明:。
查看习题详情和答案>>
(本小题满分13分)已知椭圆的中心在原点,一个焦点F1(0,-2),且离心率e满足:,e,成等比数列.
(1)求椭圆方程;
(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
平分.若存在,求出l的倾斜角的范围;若不存在,请说明理由.
查看习题详情和答案>>