网址:http://m.1010jiajiao.com/timu_id_160001[举报]
如图,是△
的重心,
、
分别是边
、
上的动点,且
、
、
三点共线.
(1)设,将
用
、
、
表示;
(2)设,
,证明:
是定值;
(3)记△与△
的面积分别为
、
.求
的取值范围.
(提示:
【解析】第一问中利用(1)
第二问中,由(1),得;①
另一方面,∵是△
的重心,
∴
而、
不共线,∴由①、②,得
第三问中,
由点、
的定义知
,
,
且时,
;
时,
.此时,均有
.
时,
.此时,均有
.
以下证明:,结合作差法得到。
解:(1)
.
(2)一方面,由(1),得;①
另一方面,∵是△
的重心,
∴. ②
而、
不共线,∴由①、②,得
解之,得,∴
(定值).
(3).
由点、
的定义知
,
,
且时,
;
时,
.此时,均有
.
时,
.此时,均有
.
以下证明:.(法一)由(2)知
,
∵,∴
.
∵,∴
.
∴的取值范围
查看习题详情和答案>>
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201305/80/aeaa96a5.png)
(Ⅰ)求助跑道所在的抛物线方程;
(Ⅱ)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4米到6米之间(包括4米和6米),试求运动员飞行过程中距离平台最大高度的取值范围?
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值.)
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (
N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由
得
. ……2分
若存在由
得
,
从而有,与
矛盾,所以
.
从而由得
得
. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一.
……10分
证法三:(利用对偶式)设,
,
则.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当时,
,命题成立;
②假设时,命题成立,即
,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
查看习题详情和答案>>