摘要:解 ∵函数在点(2,1)处的切线的斜率等于直线3x-y-2=0的斜率,∴y′|x=2=3.答案 C
网址:http://m.1010jiajiao.com/timu_id_15930[举报]
若函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线的斜率为-1,有以下命题:
(1)f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]
(2)f(x)的极值点有且仅有一个
(3)f(x)的最大值与最小值之和等于零
其中假命题个数为( )
(1)f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]
(2)f(x)的极值点有且仅有一个
(3)f(x)的最大值与最小值之和等于零
其中假命题个数为( )
| A、0个 | B、1个 | C、2个 | D、3个 |
已知函数
在
处取得极值,且过原点,曲线
在P(-1,2)处的切线
的斜率是-3
(1)求
的解析式;
(2)若
在区间
上是增函数,数
的取值范围;
(3)若对任意
,不等式
恒成立,求
的最小值.
若函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线的斜率为-1,有以下命题:
(1)f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]
(2)f(x)的极值点有且仅有一个
(3)f(x)的最大值与最小值之和等于零
其中假命题个数为( )
A.0个
B.1个
C.2个
D.3个
查看习题详情和答案>>
(1)f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]
(2)f(x)的极值点有且仅有一个
(3)f(x)的最大值与最小值之和等于零
其中假命题个数为( )
A.0个
B.1个
C.2个
D.3个
查看习题详情和答案>>