网址:http://m.1010jiajiao.com/timu_id_15795[举报]
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,令则
令,则.当时,单调递减;当时,单调递增.故当,即
从而,又
所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力 第一问要利用相似比得到结论。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)
第二问,
当且仅当
(3)令
∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.
∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).
查看习题详情和答案>>
假设关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知,y对x呈线性相关关系.试求:
(1)线性回归方程;
(2)估计使用年限为10年时,维修费用约是多少?思路分析:本题考查线性回归方程的求法和利用线性回归方程求两变量间的关系.
解:(1)
i | 1 | 2 | 3 | 4 | 5 |
xi | 2 | 3 | 4 | 5 | 6 |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
xiyi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
b==1.23,
a=-b=5-1.23×4=0.08.
所以,回归直线方程为=1.23x+0.08.
(2)当x=10时,=1.23×10+0.08=12.38(万元),
即估计使用10年时维修费约为12.38万元.
查看习题详情和答案>>