摘要:=-t2+. 6分
网址:http://m.1010jiajiao.com/timu_id_15290[举报]
(2010•武汉模拟)如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(0<t≤2)左侧的图形的面积f(t),则函数f(t)的解析式为:
查看习题详情和答案>>
f(t)=
|
f(t)=
.
|
已知函数f(x)=
.
(1)若f(a)•(e-1)=
f(x)dx,求a的值;
(2)t>1,是否存在a∈[1,t]使得f(a)•(t-1)=
f(x)dx成立?并给予证明;
(3)结合定积分的几何意义说明(2)的几何意义.
查看习题详情和答案>>
1 |
x |
(1)若f(a)•(e-1)=
∫ | e 1 |
(2)t>1,是否存在a∈[1,t]使得f(a)•(t-1)=
∫ | t 1 |
(3)结合定积分的几何意义说明(2)的几何意义.
对于在[a,b]上有意义的两个函数f(x)与g(x),如果对任意的x∈[a,b],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是接近的,否则称f(x)与g(x)在[a,b]上是非接近的.现在有两个函数f(x)=logt(x-3t)与g(x)=logt(
)(t>0且t≠1),现给定区间[t+2,t+3].
(1)若t=
,判断f(x)与g(x)是否在给定区间上接近;
(2)若f(x)与g(x)在给定区间[t+2,t+3]上都有意义,求t的取值范围;
(3)讨论f(x)与g(x)在给定区间[t+2,t+3]上是否是接近的.
查看习题详情和答案>>
1 |
x-t |
(1)若t=
1 |
2 |
(2)若f(x)与g(x)在给定区间[t+2,t+3]上都有意义,求t的取值范围;
(3)讨论f(x)与g(x)在给定区间[t+2,t+3]上是否是接近的.
(2012•闵行区三模)某商品在50天的销售期间,其单价f(t)(元)、销售数量g(t)(件)与时间t(天)(t是正整数)之间的函数关系式分别是:f(t)=
,g(t)=-t+50(0≤t≤50).
(1)写出这种商品在50天内销售金额F(t)与时间t的函数关系式;
(2)问这种商品在50天内哪一天的销售金额最大?
查看习题详情和答案>>
|
(1)写出这种商品在50天内销售金额F(t)与时间t的函数关系式;
(2)问这种商品在50天内哪一天的销售金额最大?
(2012•成都一模)已知函数f(x)在[a,b]上连续,定义
;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整数k使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.有下列命题:
①若f(x)=cosx,x∈[0,π],则f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],则f2(x)=2x,x∈[-1,4]
③f(x)=x为[1,2]上的1阶收缩函数;
④f(x)=x2为[1,4]上的5阶收缩函数.
其中你认为正确的所有命题的序号为
查看习题详情和答案>>
|
①若f(x)=cosx,x∈[0,π],则f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],则f2(x)=2x,x∈[-1,4]
③f(x)=x为[1,2]上的1阶收缩函数;
④f(x)=x2为[1,4]上的5阶收缩函数.
其中你认为正确的所有命题的序号为
②③④
②③④
.