摘要:例5.在中...若以.为焦点的椭圆经过点.则该椭圆的离心率 .
网址:http://m.1010jiajiao.com/timu_id_130200[举报]
1. 构造向量,,所以,.由数量积的性质,得,即的最大值为2.
2. ∵,令得,所以,当时,,当时,,所以当时,.
3.∵,∴,,又,∴,则,所以周期.作出在上的图象知:若,满足条件的()存在,且,关于直线对称,,关于直线对称,∴;若,满足条件的()存在,且,关于直线对称,,关于直线对称,
∴.
4. 不等式()表示的区域是如图所示的菱形的内部,
∵,
当,点到点的距离最大,此时的最大值为;
当,点到点的距离最大,此时的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为.
6. ∵,∴,
设,,则.
作出该不等式组表示的平面区域(图中的阴影部分).
令,则,它表示斜率为的一组平行直线,易知,当它经过点时,取得最小值.
解方程组,得,∴
从某校参加2009年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.
(1)根据表中已知数据,你认为在①、②、③处的数值分别为 , , .
(2)补全在区间[70,140]上的频率分布直方图;
(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
查看习题详情和答案>>
(1)根据表中已知数据,你认为在①、②、③处的数值分别为
(2)补全在区间[70,140]上的频率分布直方图;
(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
分组 | 频数 | 频率 |
[70,80) | 0.08 | |
[80,90) | ③ | |
[90,100) | 0.36 | |
[100,110) | 16 | 0.32 |
[110,120) | 0.08 | |
[120,130) | 2 | ② |
[130,140] | 0.02 | |
合计 | ① |
从某校参加2009年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.
(1)根据表中已知数据,你认为在①、②、③处的数值分别为______,______,______.
(2)补全在区间[70,140]上的频率分布直方图;
(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
查看习题详情和答案>>
(1)根据表中已知数据,你认为在①、②、③处的数值分别为______,______,______.
(2)补全在区间[70,140]上的频率分布直方图;
(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
分组 | 频数 | 频率 |
[70,80) | 0.08 | |
[80,90) | ③ | |
[90,100) | 0.36 | |
[100,110) | 16 | 0.32 |
[110,120) | 0.08 | |
[120,130) | 2 | ② |
[130,140] | 0.02 | |
合计 | ① |
查看习题详情和答案>>
从某校参加2009年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.
(1)根据表中已知数据,你认为在①、②、③处的数值分别为______,______,______.
(2)补全在区间[70,140]上的频率分布直方图;
(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
查看习题详情和答案>>
(1)根据表中已知数据,你认为在①、②、③处的数值分别为______,______,______.
(2)补全在区间[70,140]上的频率分布直方图;
(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
分组 | 频数 | 频率 |
[70,80) | 0.08 | |
[80,90) | ③ | |
[90,100) | 0.36 | |
[100,110) | 16 | 0.32 |
[110,120) | 0.08 | |
[120,130) | 2 | ② |
[130,140] | 0.02 | |
合计 | ① |
查看习题详情和答案>>