网址:http://m.1010jiajiao.com/timu_id_12739[举报]
一、选择题
DDDCC CDAAB
二、填空题
11、 12、 13、 14、17 0 15、②③
三、解答题
16、⑴
17、(1),其定义域为.
令得.……………………………………………………2′
当时,当时,故当且仅当时,. 6′
(2)
由(1)知≤, ≥…………………………9′
又
故…………………………………………12′′18、(1)符合二项分布
0
1
2
3
4
5
6
……6′
(2)可取15,16,18.
表示胜5场负1场,;………………………………7′
表示胜5场平1场,;………………………………8′
表示6场全胜,.……………………………………………9′
∴.………………………………………………………………12(
19、解:(1)以所在直线为轴,以所在直线为轴,以所在直线为轴,建立如图所示的空间直角坐标系,由题意可知、、………2′
令 的坐标为
,
而,
是与的公垂线…………………………………………………………4′
(2)令面的法向量而,
令,则,即而面的法向量
……6′ ∴二面角的大小为.……8′
(3) 面的法向量为 到面的距离为
即到面的距离为.…………12′
20、解:(1)假设存在,使,则,同理可得,以此类推有,这与矛盾。则不存在,使.……3分
(2)∵当时,
又,,则
∴与相反,而,则.以此类推有:
,;……7分
(3)∵当时,,,则
∴ …9分
∴ ()……10分
∴.……12分
21、解(1)设则
①②
①-②得
……………………2′
直线的方程是 整理得………………4′
(2)联立解得
设
则且的方程为与联立消去,整理得
………………………………6′
又
…………………………………………8′
(3)直线的方程为,代入,得即
………………………………………………10′
三点共线,三点共线,且在抛物线的内部。
令为、为
故由可推得
而
同理可得:
而得………………………………14′
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
【解析】第一问当时,,则。
依题意得:,即 解得
第二问当时,,令得,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,,则。
依题意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①当时,,令得
当变化时,的变化情况如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
单调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
又,,。∴在上的最大值为2.
②当时, .当时, ,最大值为0;
当时, 在上单调递增。∴在最大值为。
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,∴的取值范围是。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上
查看习题详情和答案>>