摘要:加强学习.互相协作.务本求实.密切注视考命题动向.应该看到.搞好高考复习是一个系统工程.仅靠我们个体的经验和努力往往是不够的.我们生活在一个信息时代.这个信息时代要求我们在高考复习时必须做到:加强学习.互相协作.务本求实.密切注视考命题动向.
网址:http://m.1010jiajiao.com/timu_id_125435[举报]
某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是
,每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(I)求该学生考上大学的概率;
(II)如果考上大学或参加完5次测试就结束,求该生参加测试的次数为4的概率.
查看习题详情和答案>>
1 | 3 |
(I)求该学生考上大学的概率;
(II)如果考上大学或参加完5次测试就结束,求该生参加测试的次数为4的概率.
某地区试行高考考试改革:在高三学年中举行4次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不再参加其余的测试,而每个学生最多也只能参加4次测试.假设某学生每次通过测试的概率都是
,每次测试时间间隔恰当,每次测试通过与否互相独立.
(Ⅰ)求该学生在前两次测试中至少有一次通过的概率;
(Ⅱ)如果考上大学或参加完4次测试,那么测试就结束.记该生参加测试的次数为X,求X的分布列及X的数学期望. 查看习题详情和答案>>
2 | 3 |
(Ⅰ)求该学生在前两次测试中至少有一次通过的概率;
(Ⅱ)如果考上大学或参加完4次测试,那么测试就结束.记该生参加测试的次数为X,求X的分布列及X的数学期望. 查看习题详情和答案>>
某地区试行中考考试改革,在九年级学年中举行4次统一测试,学生如果通过其中2次测试即可获得足够学分升入高中继续学习,不再参加其余的测试,而每个学生最多也只能参加4次测试,假设某学生每次通过测试的概率都是
,每次测试时间间隔恰当,每次测试通过与否互相独立.
(Ⅰ)求该学生在前两次测试中至少有一次通过的概率;
(Ⅱ)假定该生通过其中2次测试,则结束测试,否则继续测试直至判定他能否升入高中继续学习时停止,且最多参加完4次测试,记该生参加测试的次数为X,求X的分布列及X的数学期望.
查看习题详情和答案>>
1 | 3 |
(Ⅰ)求该学生在前两次测试中至少有一次通过的概率;
(Ⅱ)假定该生通过其中2次测试,则结束测试,否则继续测试直至判定他能否升入高中继续学习时停止,且最多参加完4次测试,记该生参加测试的次数为X,求X的分布列及X的数学期望.