摘要:所以要使有且仅有两个不同的正根.必须且只须
网址:http://m.1010jiajiao.com/timu_id_121090[举报]
已知点
为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点![]()
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线
的方程;
(II)试证明:在
轴上存在定点
,使得
总能被
轴平分
【解析】第一问中设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为![]()
第二问中,设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得 ![]()
∵
,∴![]()
确定结论直线
与曲线
总有两个公共点.
然后设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
得到。
(1)设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为
. ………………2分
(2)设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得
,……5分
∵
,∴
,
∴直线
与曲线
总有两个公共点.(也可根据点M在椭圆
的内部得到此结论)
………………6分
设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
当
时,(*)对任意的s都成立,从而
总能被
轴平分.
所以在x轴上存在定点
,使得
总能被
轴平分
查看习题详情和答案>>
(2013•内江一模)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为
f(x)的不动点.如果函数f(x)=
有且仅有两个不动点0、2.
(1)求b、c满足的关系式;
(2)若c=时,相邻两项和不为零的数列{an}满足4Snf(
)=1(Sn是数列{an}的前n项和),求证:(1-
)an+1<
<(1-
)an;
(3)在(2)的条件下,设bn=-
,Tn是数列{bn}的前n项和,求证:T2012-1<ln2012<T2011.
查看习题详情和答案>>
f(x)的不动点.如果函数f(x)=
| x2+a |
| bx-c |
(1)求b、c满足的关系式;
(2)若c=时,相邻两项和不为零的数列{an}满足4Snf(
| 1 |
| an |
| 1 |
| an |
| 1 |
| e |
| 1 |
| an |
(3)在(2)的条件下,设bn=-
| 1 |
| an |
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
(b,c∈N*)有且仅有两个不动点0、2,且f(-2)<-
.
(1)试求函数f(x)的单调区间;
(2)点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,其中1<xi<2(i=1,2,3),求证:△ABC是钝角三角形. 查看习题详情和答案>>
| x2+a |
| bx-c |
| 1 |
| 2 |
(1)试求函数f(x)的单调区间;
(2)点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,其中1<xi<2(i=1,2,3),求证:△ABC是钝角三角形. 查看习题详情和答案>>