摘要:∵抛物线的顶点关于直线的对称点在该抛物线的准线上.
网址:http://m.1010jiajiao.com/timu_id_117610[举报]
,
,
为常数,离心率为
的双曲线
:
上的动点
到两焦点的距离之和的最小值为
,抛物线
:
的焦点与双曲线
的一顶点重合。(Ⅰ)求抛物线
的方程;(Ⅱ)过直线
:
(
为负常数)上任意一点
向抛物线
引两条切线,切点分别为
、
,坐标原点
恒在以
为直径的圆内,求实数
的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程
第二问中,为
,
,
,
故直线的方程为
,即
,
所以,同理可得:
借助于根与系数的关系得到即,
是方程
的两个不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得双曲线焦距为,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程
(Ⅱ)设为
,
,
,
故直线的方程为
,即
,
所以,同理可得:
,
即,
是方程
的两个不同的根,所以
由已知易得,即
查看习题详情和答案>>