网址:http://m.1010jiajiao.com/timu_id_11695[举报]
一. 填空题(每题4分,共48分)
1. {0}; 2. 四; 3. 12; 4. 0; 5. 4; 6. 理
、文7; 7. 理
; 12.
(或
).
二.选择题(每题4分,共16分)
13.D; 14.B; 15.C; 16.理B、文B.
三. 解答题. 17.(本题满分12分)解:由已知得
(3分)
∴
, ∴
(6分)
∴
又
,即
,∴
(9分)
∴
的面积S=
.
(12分)
18.(本题满分12分)解:∵
,∴
(5分)
∵
,欲使
是纯虚数,
而
=
(7分)
∴
, 即
(11分)
∴当
时,
是纯虚数.
(12分)
19.(本题满分14分,第1小题满分9分,第2小题满分5分)
解:(1)依题意设
,则
,
(2分)
(4分) 而
,
∴
,即
, (6分) ∴
(7分)
从而
.
(9分)
(2)
平面
,
∴直线
到平面
的距离即点
到平面
的距离
(2分)
也就是
的斜边
上的高,为
.
(5分)
20.(本题满分14分,第1小题满分8分,第2小题满分6分)
解:(1)不正确.
(2分)
没有考虑到
还可以小于
.
(3分)
正确解答如下:
令
,则
,
当
时,
,即
(5分)
当
时,
,即
(7分)
∴
或
,即
既无最大值,也无最小值.
(8分)
(2)(理)对于函数
,令
①当
时,
有最小值,
,
(9分)
当
时,
,即
,当
时,即
∴
或
,即
既无最大值,也无最小值.
(10分)
②当
时,
有最小值,
,
此时,
,∴
,即
,
既无最大值,也无最小值 .(11分)
③当
时,
有最小值,
,即
(12分)
∴
,即
,
∴当
时,
有最大值
,没有最小值.
(13分)
∴当
时,
既无最大值,也无最小值。
当
时,
有最大值
,此时
;没有最小值.
(14分)
(文)∵
, ∴
(12分)
∴函数
的最大值为
(当
时)而无最小值. (14分)
21.(本满分16分,第1、2小题满分各4分,第3小题满分8分)
解:(1)
(4分)
(2)由
解得
(7分)
所以第
个月更换刀具.
(8分)
(3)第
个月产生的利润是:
(9分)
个月的总利润:
(11分)
个月的平均利润:
(13分)
由
且
在第7个月更换刀具,可使这7个月的平均利润
最大(13.21万元) (14分)此时刀具厚度为
(mm)
(16分)
22.(本题满分18分,第1、2小题满分各4分,第3小题满分10分)
解:(1)
(4分)
(2)各点的横坐标为:
(8分)
(3)过
作斜率为
的直线
交抛物线于另一点
,
(9分)
则一般性的结论可以是:
点
的相邻横坐标之和构成以
为首项和公比的等比数列(或:点
无限趋向于某一定点,且其横(纵)坐标之差成等比数列;或:
无限趋向于某一定点,且其横(纵)坐标之差成等比数列,等)(12分)
证明:设过点
作斜率为
的直线交抛物线于点
由
得
或
;
点
的横坐标为
,则
(14分)
于是
两式相减得:
(16分)


=

故点
无限逼近于点
同理
无限逼近于点
(18分)
已知
R,函数
.
⑴若函数
没有零点,求实数
的取值范围;
⑵若函数
存在极大值,并记为
,求
的表达式;
⑶当
时,求证:
.
【解析】(1)求导研究函数f(x)的最值,说明函数f(x)的最大值<0,或f(x)的最小值>0.
(2)根据第(1)问的求解过程,直接得到g(m).
(3)构造函数
,证明
即可,然后利用导数求g(x)的最小值.
查看习题详情和答案>>
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
函数f(x)=x+
函数f(x)=x+
当x=________时,y最小=________.
证明:函数f(x)=x+
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
(2)函数f(x)=ax+
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
函数f(x)=x+
函数f(x)=x+
当x=______时,y最小=______.
证明:函数f(x)=x+
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
(2)函数f(x)=ax+