摘要:(1)粒子刚进入磁场区域时的速度v (2)粒子第一次在磁场中运动的时间t和位移L.
网址:http://m.1010jiajiao.com/timu_id_1095550[举报]
如图所示,在空间区域Ⅰ存在垂直纸面向里的磁感应强度为B=10T的匀强磁场,其边界为MN、PQ,其中PQ边界位置可以左右调节.在PQ右边空间区域Ⅱ存在水平向右的匀强电场,E=m/s其范围足够宽.在左边界的A点处有一个质量为m=1.0×10-12kg、带电量大小为q=1.0×10-13C的负电粒子,以速度V=3m/s沿着与左边界成60°的方向射入磁场,粒子重力不计,求:
(1)粒子在磁场中做圆周运动的半径
(2)若带电粒子从边界PQ飞出磁场,进入电场,经过一段时间,运动到电场中的C点,速度刚好减为零.求满足此种运动情况的磁场宽度以及粒子从A点到C点的时间;
(3)调节磁场与电场分界线PQ的位置,使粒子在磁场中运动的时间为t=π秒,恰好到达边界PQ时撤去磁场,同时将电场反向,粒子进入电场,经过一段时间到达D点,此时粒子速度方向与进入磁场时A点处的速度方向垂直,求粒子磁场中做圆周运动的圆心O点到D点的距离S.(结论可保留成根号形式)
查看习题详情和答案>>
(1)粒子在磁场中做圆周运动的半径
(2)若带电粒子从边界PQ飞出磁场,进入电场,经过一段时间,运动到电场中的C点,速度刚好减为零.求满足此种运动情况的磁场宽度以及粒子从A点到C点的时间;
(3)调节磁场与电场分界线PQ的位置,使粒子在磁场中运动的时间为t=π秒,恰好到达边界PQ时撤去磁场,同时将电场反向,粒子进入电场,经过一段时间到达D点,此时粒子速度方向与进入磁场时A点处的速度方向垂直,求粒子磁场中做圆周运动的圆心O点到D点的距离S.(结论可保留成根号形式)
查看习题详情和答案>>
如图所示,纸面内一带电粒子以某一速度做直线运动,一段时间后进入一垂直于纸面向里的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后, 恰好从上板边缘平行于板面进入两面平行的金属板间,两金属板带等量异种电荷,粒子在两板间经偏转后恰好从下板右边缘飞出,已知带电粒子的比荷(电量与质量之比)为k。粒子进入磁场前的速度方向与带电板成θ=600,匀强磁场的磁感应强度为B,带电金属板的板长是板间距离的2倍,板间电压为U试解答:
(1)带电粒子带什么电?
(2)带电粒子刚进入金属板间时速度v为多大?
(3)圆形磁场区域的最小面积S为多大?
(1)带电粒子带什么电?
(2)带电粒子刚进入金属板间时速度v为多大?
(3)圆形磁场区域的最小面积S为多大?
如图(甲)所示为一种研究高能粒子相互作用的装置,两个直线加速器均由k个长度逐个增长的金属圆筒组成(整个装置处于真空中,图中只画出了6个圆筒,作为示意),它们沿中心轴线排列成一串,各个圆筒相间地连接到正弦交流电源的两端。设金属圆筒内部没有电场,且每个圆筒间的缝隙宽度很小,带电粒子穿过缝隙的时间可忽略不计。为达到最佳加速效果,需要调节至粒子穿过每个圆筒的时间恰为交流电的半个周期,粒子每次通过圆筒间缝隙时,都恰为交流电压的峰值。
质量为m、电荷量为e的正、负电子分别经过直线加速器加速后,从左、右两侧被导入装置送入位于水平面内的圆环形真空管道,且被导入的速度方向与圆环形管道中粗虚线相切。在管道内控制电子转弯的是一系列圆形电磁铁,即图中的A1、A2、A3An,共n个,均匀分布在整个圆周上(图中只示意性地用细实线画了几个,其余的用细虚线表示),每个电磁铁内的磁场都是磁感应强度均相同的匀强磁场,磁场区域都是直径为d的圆形。改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度。经过精确的调整,可使电子在环形管道中沿图中粗虚线所示的轨迹运动,这时电子经过每个电磁铁时射入点和射出点都在圆形运强磁场区域的同一条直径的两端,如图(乙)所示。这就为实现正、负电子的对撞作好了准备。
(1)若正、负电子经过直线加速器后的动能均为E0,它们对撞后发生湮灭,电子消失,且仅产生一对频率相同的光子,则此光子的频率为多大?(已知普朗克恒量为h,真空中的光速为c。)
(2)若电子刚进入直线加速器第一个圆筒时速度大小为v0,为使电子通过直线加速器后速度为v,加速器所接正弦交流电压的最大值应当多大?
(3)电磁铁内匀强磁场的磁感应强度B为多大?
查看习题详情和答案>>
质量为m、电荷量为e的正、负电子分别经过直线加速器加速后,从左、右两侧被导入装置送入位于水平面内的圆环形真空管道,且被导入的速度方向与圆环形管道中粗虚线相切。在管道内控制电子转弯的是一系列圆形电磁铁,即图中的A1、A2、A3An,共n个,均匀分布在整个圆周上(图中只示意性地用细实线画了几个,其余的用细虚线表示),每个电磁铁内的磁场都是磁感应强度均相同的匀强磁场,磁场区域都是直径为d的圆形。改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度。经过精确的调整,可使电子在环形管道中沿图中粗虚线所示的轨迹运动,这时电子经过每个电磁铁时射入点和射出点都在圆形运强磁场区域的同一条直径的两端,如图(乙)所示。这就为实现正、负电子的对撞作好了准备。
(1)若正、负电子经过直线加速器后的动能均为E0,它们对撞后发生湮灭,电子消失,且仅产生一对频率相同的光子,则此光子的频率为多大?(已知普朗克恒量为h,真空中的光速为c。)
(2)若电子刚进入直线加速器第一个圆筒时速度大小为v0,为使电子通过直线加速器后速度为v,加速器所接正弦交流电压的最大值应当多大?
(3)电磁铁内匀强磁场的磁感应强度B为多大?
如图所示,有一半径为R1=1 m的圆形磁场区域,圆心为O,另有一外半径为R2=m、内半径为R1的同心环形磁场区域,磁感应强度大小均为B=0.5 T,方向相反,均垂直于纸面,一带正电粒子从平行极板下板P点静止释放,经加速后通过上板小孔Q,垂直进入环形磁场区域,已知点P、Q、O在同一竖直线上,上极板与环形磁场外边界相切,粒子比荷q/m=4×107 C/kg,不计粒子的重力,且不考虑粒子的相对论效应,求:
(1)若加速电压U1=1.25×102 V,则粒子刚进入环形磁场时的速度v0多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
(1)若加速电压U1=1.25×102 V,则粒子刚进入环形磁场时的速度v0多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
如图所示,在真空中,虚线所围的圆形区域内存在范围足够大的匀强磁场,磁场方向垂直纸面向里。在磁场右侧有一对平行金属板M和N,两板间距离为6L0,板长为12L0,板的中心线O1O2与磁场的圆心O在同一直线上且O1恰在磁场边缘。给M、N板加上变化情况如图所示的电压,电压大小恒为U0,周期大小可调。在t=0时刻,有一电荷量为q、质量为m的带电粒子,从M、N板右侧沿板的中心线以大小为v的速度向左射入M、N之间,粒子刚好以平行于M、N板的速度穿出电场。(不计粒子重力)
(1)求周期T应该满足的条件;
(2)若粒子恰好从金属板的左边缘沿平行板的速度离开电场,进入磁场后又能平行于M、N极板返回电场,求磁场磁感应强度B的大小。
查看习题详情和答案>>