摘要:∵n≥2.∴.∴bn+cn<(b+)n
网址:http://m.1010jiajiao.com/timu_id_102397[举报]
已知在数列{an}中,a1=
,Sn是其前n项和,且Sn=n2an-n(n-1).
(1)证明:数列{
Sn}是等差数列;
(2)令bn=(n+1)(1-an),记数列{bn}的前n项和为Tn.
①求证:当n≥2时,Tn2>2(
+
+…+
);
②)求证:当n≥2时,bn+1+bn+2+…+b2n<
-
.
查看习题详情和答案>>
1 |
2 |
(1)证明:数列{
n+1 |
n |
(2)令bn=(n+1)(1-an),记数列{bn}的前n项和为Tn.
①求证:当n≥2时,Tn2>2(
T2 |
2 |
T3 |
3 |
Tn |
n |
②)求证:当n≥2时,bn+1+bn+2+…+b2n<
4 |
5 |
1 |
2n+1 |
各项为正数的数列{an},其前n项的和为Sn,且Sn=(
+
)2(n≥2),若bn=
+
,且数列{bn}的前n项的和为Tn,则Tn=
.
查看习题详情和答案>>
Sn-1 |
a1 |
an+1 |
an |
an |
an+1 |
4n2+6n |
2n+1 |
4n2+6n |
2n+1 |
已知数列{an}满足a1=2,a2=1,且
=
(n≥2),bn=
.
(1)证明:
-
=
;
(2)求数列{bn}的前项和Sn.
查看习题详情和答案>>
an-1-an |
anan-1 |
an-an+1 |
anan+1 |
2n |
an |
(1)证明:
1 |
an |
1 |
an-1 |
1 |
2 |
(2)求数列{bn}的前项和Sn.