网址:http://m.1010jiajiao.com/timu_id_101851[举报]
|
设函数
(1)当时,求曲线处的切线方程;
(2)当时,求的极大值和极小值;
(3)若函数在区间上是增函数,求实数的取值范围.
【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。
解:(1)当……2分
∴
即为所求切线方程。………………4分
(2)当
令………………6分
∴递减,在(3,+)递增
∴的极大值为…………8分
(3)
①若上单调递增。∴满足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数的取值范围是
查看习题详情和答案>>
已知幂函数满足。
(1)求实数k的值,并写出相应的函数的解析式;
(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足,得到
因为,所以k=0,或k=1,故解析式为
(2)由(1)知,,,因此抛物线开口向下,对称轴方程为:,结合二次函数的对称轴,和开口求解最大值为5.,得到
(1)对于幂函数满足,
因此,解得,………………3分
因为,所以k=0,或k=1,当k=0时,,
当k=1时,,综上所述,k的值为0或1,。………………6分
(2)函数,………………7分
由此要求,因此抛物线开口向下,对称轴方程为:,
当时,,因为在区间上的最大值为5,
所以,或…………………………………………10分
解得满足题意
查看习题详情和答案>>
已知,函数
(1)当时,求函数在点(1,)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中,那么当时, 又 所以函数在点(1,)的切线方程为;(2)中令 有
对a分类讨论,和得到极值。(3)中,设,,依题意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 当时, 又
∴ 函数在点(1,)的切线方程为 --------4分
(Ⅱ)令 有
① 当即时
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
极大值 |
极小值 |
故的极大值是,极小值是
② 当即时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。
综上所述 时,极大值为,无极小值
时 极大值是,极小值是 ----------8分
(Ⅲ)设,
对求导,得
∵,
∴ 在区间上为增函数,则
依题意,只需,即
解得 或(舍去)
则正实数的取值范围是(,)
查看习题详情和答案>>
设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间上的最小值.
【解析】第一问定义域为真数大于零,得到..
令,则,所以或,得到结论。
第二问中, ().
.
因为0<a<2,所以,.令 可得.
对参数讨论的得到最值。
所以函数在上为减函数,在上为增函数.
(I)定义域为. ………………………1分
.
令,则,所以或. ……………………3分
因为定义域为,所以.
令,则,所以.
因为定义域为,所以. ………………………5分
所以函数的单调递增区间为,
单调递减区间为. ………………………7分
(II) ().
.
因为0<a<2,所以,.令 可得.…………9分
所以函数在上为减函数,在上为增函数.
①当,即时,
在区间上,在上为减函数,在上为增函数.
所以. ………………………10分
②当,即时,在区间上为减函数.
所以.
综上所述,当时,;
当时,
查看习题详情和答案>>