摘要:即时不等式成立.故不等式恒成立. -----------14
网址:http://m.1010jiajiao.com/timu_id_101543[举报]
已知递增等差数列满足:
,且
成等比数列.
(1)求数列的通项公式
;
(2)若不等式对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为
,
由题意可知,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
解:(1)设数列公差为
,由题意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等价于,
当时,
;当
时,
;
而,所以猜想,
的最小值为
. …………8分
下证不等式对任意
恒成立.
方法一:数学归纳法.
当时,
,成立.
假设当时,不等式
成立,
当时,
,
…………10分
只要证 ,只要证
,
只要证 ,只要证
,
只要证 ,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证
只要证 ,
设数列的通项公式
, …………10分
, …………12分
所以对,都有
,可知数列
为单调递减数列.
而,所以
恒成立,
故的最小值为
.
查看习题详情和答案>>