摘要:已知. (1)分别求与的值, (2)求的值. 解:(1)∵..且 ∴..∴. 又..∴ ∴ (2)∵.,∴.∴ 又..∴ ∴ 题型二:三角函数图像.性质
网址:http://m.1010jiajiao.com/timu3_id_538951[举报]
已知:函数fn(x)(n∈N*)的定义域为(-∞,0)∪(0,+∞),其中
,并且当n>1且n∈N*时,满足
.
(1)求函数fn(x)(n∈N*)的解析式;
(2)当n=1,2,3时,分别研究函数fn(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,提出一个类似(2)的研究问题,并写出问题的研究过程与研究结论.
【第(3)小题将根据你所提出问题的质量,以及解决所提出问题的情况进行分层评分】
查看习题详情和答案>>
(1)求函数fn(x)(n∈N*)的解析式;
(2)当n=1,2,3时,分别研究函数fn(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,提出一个类似(2)的研究问题,并写出问题的研究过程与研究结论.
【第(3)小题将根据你所提出问题的质量,以及解决所提出问题的情况进行分层评分】
查看习题详情和答案>>
已知函数![]()
(1)若函数
时有极值且在函数图象上的点(0,1)处的切线与直线
的解析式;
(2)当
取得极大值且加
取得极小值时,设点M(
)所在平面区域为S,经过原点的直线L将S分别面积比为1:3的两部分求直线L的方程。
已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,建立如图所示的坐标系,用向量方法解决下面问题.
(1)求直线DD1与直线AE所成的角的余弦值;
(2)求证:D1F⊥平面ADE.
(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x(x≠3,保留4位有效数字),使得f(x)<0成立;
(2)在曲线
上存在两个不同点关于直线y=x对称,求出其坐标;若曲线
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取
及
加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间
上单调递减,在区间
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
查看习题详情和答案>>
①若f(3)<0,试求a的取值范围;
②写出一组数a,x(x≠3,保留4位有效数字),使得f(x)<0成立;
(2)在曲线
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取
查看习题详情和答案>>