摘要:2.任意角的三角函数定义 任意角的6个三角函数定义的本质是给角这个几何量以代数表达.借助直角坐标系这个工具.把角放进直角坐标系中完成的.由任意角的三角函数定义直接可以得到: (1)三角函数的定义域 (2)三角函数值在四个象限中的符号 (3)同角三角函数的关系 (4)单位圆中的三角函数线:要充分利用三角函数线在记忆三角函数性质与公式以及解决三角函数问题中的作用.
网址:http://m.1010jiajiao.com/timu3_id_537883[举报]
(文)一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角形函数”.
(1)判断f1(x)=
,f2(x)=x,f3(x)=x2中,哪些是“三角形函数”,哪些不是,并说明理由;
(2)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“三角形函数”;
(3)若函数F(x)=sinx,x∈(0,A),当A>
时,F(x)不是“三角形函数”.
查看习题详情和答案>>
(1)判断f1(x)=
| x |
(2)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“三角形函数”;
(3)若函数F(x)=sinx,x∈(0,A),当A>
| 5π |
| 6 |
(文)一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角形函数”.
(1)判断f1(x)=
,f2(x)=x,f3(x)=x2中,哪些是“三角形函数”,哪些不是,并说明理由;
(2)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“三角形函数”;
(3)若函数F(x)=sinx,x∈(0,A),当A>
时,F(x)不是“三角形函数”.
查看习题详情和答案>>
(1)判断f1(x)=
| x |
(2)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“三角形函数”;
(3)若函数F(x)=sinx,x∈(0,A),当A>
| 5π |
| 6 |