摘要: 设实数.且满足 (1)求的最小值, (2)设(
网址:http://m.1010jiajiao.com/timu3_id_532369[举报]
设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足f(an+1)=
(n∈N*)
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,请说明理由.
查看习题详情和答案>>
| 1 | f(-2-an) |
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,请说明理由.
设函数f(x)的定义域为R,当x<0时,0<f(x)<1,且对于任意的实数x、y∈R,都有f(x+y)=f(x)f(y).
(1)求f(0);
(2)试判断函数f(x)在[0,+∞)上是否存在最小值,若存在,求该最小值;若不存在,说明理由;
(3)设数列{an}各项都是正数,且满足a1=f(0),f(
-
)=
(n∈N*),又设bn=(
)an,Sn=b1+b2+…+bn,Tn=
+
+…+
,当n≥2时,试比较Sn与Tn的大小,并说明理由.
查看习题详情和答案>>
(1)求f(0);
(2)试判断函数f(x)在[0,+∞)上是否存在最小值,若存在,求该最小值;若不存在,说明理由;
(3)设数列{an}各项都是正数,且满足a1=f(0),f(
| a | 2 n+1 |
| a | 2 n |
| 1 |
| f(-an+1-an) |
| 1 |
| 2 |
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |