网址:http://m.1010jiajiao.com/timu3_id_528948[举报]
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {
}的前n项和为( )
|
| A. |
| B. |
| C. |
| D. |
|
| 考点: | 数列的求和;等差数列的性质. |
| 专题: | 等差数列与等比数列. |
| 分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 { |
| 解答: | 解:∵Sn=4n+ ∴ ∴数列 { 故选A. |
| 点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |
设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是
A.若d<0,则数列{S n}有最大项
B.若数列{S n}有最大项,则d<0
C.若数列{S n}是递增数列,则对任意的n
N*,均有S n>0
D.若对任意的n
N*,均有S n>0,则数列{S n}是递增数列
【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.
【答案】C
查看习题详情和答案>>
|