摘要:如图,点为双曲线的左焦点,左准线交轴于点,点是上一点. 已知,且线段的中点在双曲线的左支上. (Ⅰ)求双曲线的标准方程, (Ⅱ)若过点的直线与双曲线的左.右两支分别交于.两点, 设,当时,求直线的斜率的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_526466[举报]
(本小题满分12分)
如图,直角坐标系
中,一直角三角形
,
,
、
在
轴上且关于原点
对称,
在边
上,
,
的周长为12.若一双曲线
以
、
为焦点,且经过
、
两点.(1) 求双曲线
的方程;
(2) 若一过点
(
为非零常数)的直线
与双曲线
相交于不同于双曲线顶点的两点
、
,且
,问在
轴上是否存在定点
,使
?若存在,求出所有这样定点
的坐标;若不存在,请说明理由.
本小题满分12分)
如图点
为双曲线
的左焦点,左准线
交
轴于点
,点P是
上的一点
,且线段PF的中点
在双曲线
的左支上.
(1)求双曲线
的标准方程;
(2)若过点
的直线
与双曲线
的左右两支分别交于
、
两点,设
,当
时,求直线
的斜率
的取值范围.

如图点
(1)求双曲线
(2)若过点
(本小题满分12分)
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.