摘要: 已知数列{}满足(其中是给定的实常数).又. (1)求数列{}的通项公式, (2)求的值.使得{}的最小.
网址:http://m.1010jiajiao.com/timu3_id_525110[举报]
已知数列{an}和{bn}满足:a1=λ,an+1=
-3n+21),其中λ为实数,n为正整数.Sn为数列{bn}的前n项和.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
查看习题详情和答案>>
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
查看习题详情和答案>>
已知数列{an}和{bn}满足:a1=λ,an+1=
-3n+21),其中λ为实数,n为正整数.Sn为数列{bn}的前n项和.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
查看习题详情和答案>>
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
查看习题详情和答案>>
已知数列{an}和{bn}满足:a1=λ,an+1=
-3n+21),其中λ为实数,n为正整数.Sn为数列{bn}的前n项和.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
查看习题详情和答案>>
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
查看习题详情和答案>>