摘要:定义在上的函数.如果满足:对任意.存在常数.都有成立.则称是上的有界函数.其中称为函数的上界. 已知函数,. (1)当时.求函数在上的值域.并判断函数在上是否为有界函数.请说明理由, (2)若函数在上是以为上界的有界函数.求实数的取值范围, (3)若函数在上的上界是.求的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_521664[举报]
已知定义在
上的函数
,如果满足:对任意
,存在常数
,使得
成立,则称
是
上的有界函数,其中
称为函数
的上界.
下面我们来考虑两个函数:
,
.
(Ⅰ)当
时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(Ⅱ)若
,函数
在
上的上界是
,求
的取值范围;
(Ⅲ)若函数
在
上是以
为上界的有界函数, 求实数
的取值范围.
(本小题满分16分)定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
已知函数
;
.
(1)当
时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数
在
上是以3为上界的有界函数,求实数
的取值范围;
(3)若
,函数
在
上的上界是
,求
的取值范围.
查看习题详情和答案>>
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的一个上界.已知函数
,
.
(1)若函数
为奇函数,求实数
的值;
(2)在(1)的条件下,求函数
在区间
上的所有上界构成的集合;
(3)若函数
在
上是以3为上界的有界函数,求实数
的取值范围.