摘要:(Ⅰ)证法一:设点P的坐标为 由P在椭圆上.得 由.所以 ---------3分 证法二:设点P的坐标为记 则 由 证法三:设点P的坐标为椭圆的左准线方程为 由椭圆第二定义得.即 由.所以----------3分 (Ⅱ)解法一:设点T的坐标为 当时.点(.0)和点(-.0)在轨迹上. 当|时.由.得. 又.所以T为线段F2Q的中点. 在△QF1F2中..所以有 综上所述.点T的轨迹C的方程是----------7分 解法二:设点T的坐标为 当时.点(.0)和点(-.0)在轨迹上. 当|时.由.得. 又.所以T为线段F2Q的中点. 设点Q的坐标为().则 因此 ① 由得 ② 将①代入②.可得 综上所述.点T的轨迹C的方程是--------7分 ③ ④ (Ⅲ)解法一:C上存在点M()使S=的充要条件是 由③得.由④得 所以.当时.存在点M.使S=, 当时.不存在满足条件的点M.---------11分 当时.. 由. . .得 解法二:C上存在点M()使S=的充要条件是 ③ ④ 由④得 上式代入③得 于是.当时.存在点M.使S=, 当时.不存在满足条件的点M.---------11分 当时.记. 由知.所以----14分
网址:http://m.1010jiajiao.com/timu3_id_518110[举报]
设椭圆
的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明直线
的斜率
满足![]()
【解析】(1)解:设点P的坐标为
.由题意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以椭圆的离心率![]()
(2)证明:(方法一)
依题意,直线OP的方程为
,设点P的坐标为
.
由条件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依题意,直线OP的方程为
,设点P的坐标为
.
由P在椭圆上,有![]()
因为
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
查看习题详情和答案>>